Some people can easily empathize with others, while others cannot. The neural mechanism underlying individual difference of how much people can empathize with others is still not clear. Vicarious reward is the phenomenon by which we vicariously experience the positive sensations or emotions of others. Beta oscillatory activity (BOA) is observed when participants experience vicarious reward. Recent studies have reported that the default mode network (DMN) is also involved in reward processing and have suggested that individual differences in the way participants respond to reward stimuli are correlated with DMN functional connectivity during the resting state. In the current study, we investigated whether DMN functional connectivity during the resting state is also correlated with BOA for vicarious reward. Participants watched a player playing a game (Kendama) and investigated the correlation of BOA amplitude and resting state DMN functional connectivity. The results revealed a significant correlation between the degree of phase synchronization within DMN components in the resting state and the amplitude of BOA while participants experienced vicarious reward. The results suggested that functional connectivity within the DMN in the resting state positively influenced vicarious reward processing while observing others receiving a reward.
References
[1]
Aoki, R., Matsumoto, M., Yomogida, Y., Izuma, K., Murayama, K., Sugiura, A., Camerer, C. F., Adolphs, R., & Matsumoto, K. (2014). Social Equality in the Number of Choice Options Is Represented in the Ventromedial Prefrontal Cortex. The Journal of Neuroscience, 34, 6413-6421. https://doi.org/10.1523/JNEUROSCI.4427-13.2014
[2]
Apps, M. A. J., Green, R., & Ramnani, N. (2013). Reinforcement Learning Signals in the Anterior Cingulate Cortex Code for Others’ False Beliefs. NeuroImage, 64, 1-9. https://doi.org/10.1016/j.neuroimage.2012.09.010
[3]
Apps, M. A., Rushworth, M. F., & Chang, S. W. (2016). The Anterior Cingulate Gyrus and Social Cognition: Tracking the Motivation of Others. Neuron, 90, 692-707.
[4]
Bilevicius, E., Kolesar, T. A., Smith, S. D., Trapnell, P. D., & Kornelsen, J. (2018). Trait Emotional Empathy and Resting State Functional Connectivity in Default Mode, Salience, and Central Executive Networks. Brain Sciences, 8, 128. https://doi.org/10.3390/brainsci8070128
[5]
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The Brain’s Default Network: Anatomy, Function, and Relevance to Disease. Annals of the New York Academy of Sciences, 1124, 1-38. https://doi.org/10.1196/annals.1440.011
[6]
Burke, C. J., Tobler, P. N., Baddeley, M., & Schultz, W. (2010). Neural Mechanisms of Observational Learning. Proceedings of the National Academy of Sciences of the United States of America, 107, 14431-14436. https://doi.org/10.1073/pnas.1003111107
[7]
Davis, M. H. (1996). Empathy: A Social Psychological Approach (Social Psychology Series). Boulder, US: Westview Press.
[8]
De Pascalis, V., Varriale, V., & Rotonda, M. (2012). EEG Oscillatory Activity Associated to Monetary Gain and Loss Signals in a Learning Task: Effects of Attentional Impulsivity and Learning Ability. International Journal of Psychophysiology, 85, 68-78. https://doi.org/10.1016/j.ijpsycho.2011.06.005
[9]
Decety, J., & Ickes, W. (Eds.) (2009). Social Neuroscience. The Social Neuroscience of Empathy. Cambridge, MA: MIT Press. https://doi.org/10.7551/mitpress/9780262012973.001.0001
[10]
Farrow, T. F. D., Zheng, Y., Wilkinson, I. D., Spence, S. A., Deakin, J. F. W., Tarrier, N. et al. (2001). Investigating the Functional Anatomy of Empathy and Forgiveness. NeuroReport, 12, 2433-2438. https://doi.org/10.1097/00001756-200108080-00029
[11]
Figee, M., Vink, M., de Geus, F., Vulink, N., Veltman, D. J., Westenberg, H. et al. (2011). Dysfunctional Reward Circuitry in Obsessive-Compulsive Disorder. Biological Psychiatry, 69, 867-874. https://doi.org/10.1016/j.biopsych.2010.12.003
[12]
Fransson, P., & Marrelec, G. (2008). The Precuneus/Posterior Cingulate Cortex Plays a Pivotal Role in the Default Mode Network: Evidence from a Partial Correlation Network Analysis. NeuroImage, 42, 1178-1184. https://doi.org/10.1016/j.neuroimage.2008.05.059
[13]
Gable, S. L., & Reis, H. T. (2010). Good News! Capitalizing on Positive Events in an Interpersonal Context. Advances in Experimental Social Psychology, 42, 195-257. https://doi.org/10.1016/S0065-2601(10)42004-3
[14]
Gobbini, M. I., Koralek, A. C., Bryan, R. E., Montgomery, K. J., & Haxby, J. V. (2007). Two Takes on the Social Brain: A Comparison of Theory of Mind Tasks. Journal of Cognitive Neuroscience, 19, 1803-1814. https://doi.org/10.1162/jocn.2007.19.11.1803
[15]
Hobson, H. M., & Bishop, D. V. M. (2016). Mu Suppression: A Good Measure of the Human Mirror Neuron System? Cortex, 82, 290-310. https://doi.org/10.1016/j.cortex.2016.03.019
[16]
Iacoboni, M., Lieberman, M. D., Knowlton, B. J., Molnar-Szakacs, I., Moritz, M., Throop, C. J. et al. (2004). Watching Social Interactions Produces Dorsomedial Prefrontal and Medial Parietal BOLD fMRI Signal Increases Compared to a Resting Baseline. NeuroImage, 21, 1167-1173. https://doi.org/10.1016/j.neuroimage.2003.11.013
[17]
Inomata, T., Zama, T., & Shimada, S. (2019). Functional Connectivity between Motor and Mid-Frontal Areas during Vicarious Reward Revealed via EEG Time-Frequency Analysis. Frontiers in Human Neuroscience, 13, 428. https://doi.org/10.3389/fnhum.2019.00428
[18]
Jann, K., Kottlow, M., Dierks, T., Boesch, C., & Koenig, T. (2010). Topographic Electrophysiological Signatures of fMRI Resting State Networks. PLoS ONE, 5, e12945. https://doi.org/10.1371/journal.pone.0012945
[19]
Jung, W. H., Kang, D. H., Han, J. Y., Jang, J. H., Gu, B. M., Choi, J. S. et al. (2011). Aberrant Ventral Striatal Responses during Incentive Processing in Unmedicated Patients with Obsessive-Compulsive Disorder. Acta Psychiatrica Scandinavica, 123, 376-386. https://doi.org/10.1111/j.1600-0447.2010.01659.x
[20]
Jung, W. H., Kang, D. H., Kim, E., Shin, K. S., Jang, J. H., & Kwon, J. S. (2013). Abnormal Corticostriatal-Limbic Functional Connectivity in Obsessive-Compulsive Disorder during Reward Processing and Resting-State. NeuroImage: Clinical, 3, 27-38. https://doi.org/10.1016/j.nicl.2013.06.013
[21]
Kajihara, T., Anwar, M. N., Kawasaki, M., Mizuno, Y., Nakazawa, K., & Kitajo, K. (2015). Neural Dynamics in Motor Preparation: From Phase-Mediated Global Computation to Amplitude-Mediated Local Computation. NeuroImage, 118, 445-455. https://doi.org/10.1016/j.neuroimage.2015.05.032
[22]
Kaufmann, C., Beucke, J. C., Preusse, F., Endrass, T., Schlagenhauf, F., Heinz, A. et al. (2013). Medial Prefrontal Brain Activation to Anticipated Reward and Loss in Obsessive-Compulsive Disorder. NeuroImage: Clinical, 2, 212-220. https://doi.org/10.1016/j.nicl.2013.01.005
[23]
Kawasaki, M., Kitajo, K., & Yamaguchi, Y. (2010). Dynamic Links between Theta Executive Functions and Alpha Storage Buffers in Auditory and Visual Working Memory. European Journal of Neurology, 31, 1683-1689. https://doi.org/10.1111/j.1460-9568.2010.07217.x
[24]
Kawasaki, M., Kitajo, K., & Yamaguchi, Y. (2014). Fronto-Parietal and Fronto-Temporal Theta Phase Synchronization for Visual and Auditory-Verbal Working Memory. Frontiers in Psychology, 5, 200. https://doi.org/10.3389/fpsyg.2014.00200
[25]
Kim, S. J., Kim, S. E., Kim, H. E., Han, K., Jeong, B., Kim, J. J. et al. (2017). Altered Functional Connectivity of the Default Mode Network in Low-Empathy Subjects. Yonsei Medical Journal, 58, 1061-1065. https://doi.org/10.3349/ymj.2017.58.5.1061
[26]
Knyazev, G. (2013). Extraversion and Anterior vs. Posterior DMN Activity during Self-Referential Thoughts. Frontiers in Human Neuroscience, 6, 348. https://doi.org/10.3389/fnhum.2012.00348
[27]
Knyazev, G. G., Bocharov, A. V., & Pylkova, L. V. (2012). Extraversion and Fronto-Posterior EEG Spectral Power Gradient: An Independent Component Analysis. Biological Psychology, 89, 515-524. https://doi.org/10.1016/j.biopsycho.2011.12.023
[28]
Koch, K., Reeß, T. J., Rus, O. G., Gürsel, D. A., Wagner, G., Berberich, G. et al. (2018). Increased Default Mode Network Connectivity in Obsessive-Compulsive Disorder during Reward Processing. Frontiers in Psychiatry, 9, 254. https://doi.org/10.3389/fpsyt.2018.00254
[29]
Laarne, P. H., Tenhunen-Eskelinen, M. L., Hyttinen, J. K., & Eskola, H. J. (2000). Effect of EEG Electrode Density on Dipole Localization Accuracy Using Two Realistically Shaped Skull Resistivity Models. Brain Topography, 12, 249-254. https://doi.org/10.1023/A:1023422504025
[30]
Lammel, S., Hetzel, A., Häckel, O., Jones, I., Liss, B., & Roeper, J. (2008). Unique Properties of Mesoprefrontal Neurons within a Dual Mesocorticolimbic Dopamine System. Neuron, 57, 760-773. https://doi.org/10.1016/j.neuron.2008.01.022
[31]
Lantz, G., Grave de Peralta, R., Spinelli, L., Seeck, M., & Michel, C. M. (2003). Epileptic Source Localization with High Density EEG: How Many Electrodes Are Needed? Clinical Neurophysiology, 114, 63-69. https://doi.org/10.1016/S1388-2457(02)00337-1
[32]
Lockwood, P. L. (2016). The Anatomy of Empathy: Vicarious Experience and Disorders of Social Cognition. Behavioral Brain Research, 311, 255-266. https://doi.org/10.1016/j.bbr.2016.05.048
[33]
Lockwood, P. L., Apps, M., Roiser, J., & Viding, E. (2015). Encoding of Vicarious Reward Prediction in Anterior Cingulate Cortex and Relationship with Trait Empathy. The Journal of Neuroscience, 35, 13720-13727. https://doi.org/10.1523/JNEUROSCI.1703-15.2015
[34]
Mantini, D., Perrucci, M. G., Del Gratta, D., Romani, G. L., & Corbetta, M. (2007). Electrophysiological Signatures of Resting State Networks in the Human Brain. Proceedings of the National Academy of Sciences United States of America, 104, 13170-13175. https://doi.org/10.1073/pnas.0700668104
[35]
Marco-Pallarés, J., Cucurell, D., Cunillera, T., Garcí, R., Andrés-Pueyoc, A., Münte, T. F. et al. (2008). Human Oscillatory Activity Associated to Reward Processing in a Gambling Task. Neuropsychologia, 46, 241-248. https://doi.org/10.1016/j.neuropsychologia.2007.07.016
[36]
Marco-Pallarés, J., Münte, T. F., & Rodríguez-Fornells, A. (2015). The Role of High-Frequency Oscillatory Activity in Reward Processing and Learning. Neuroscience & Biobehavioral Reviews, 49, 1-7. https://doi.org/10.1016/j.neubiorev.2014.11.014
[37]
Mas-Herrero, E., Ripollés, P., HajiHosseini, A., Rodríguez-Fornells, A., & Marco-Pallarés, J. (2015). Beta Oscillations and Reward Processing: Coupling Oscillatory Activity and Hemodynamic Responses. NeuroImage, 119, 13-19. https://doi.org/10.1016/j.neuroimage.2015.05.095
[38]
Mitchell, J. P. (2006). Mentalizing and Marr: An Information Processing Approach to the Study of Social Cognition. Brain Research, 1079, 66-75. https://doi.org/10.1016/j.brainres.2005.12.113
[39]
Mitchell, J. P., Banaji, M. R., & Macrae, C. N. (2005). The Link between Social Cognition and Self-Referential Thought in the Medial Prefrontal Cortex. Journal of Cognitive Neuroscience, 17, 1306-1315. https://doi.org/10.1162/0898929055002418
[40]
Mobbs, D., Yu, R., Meyer, M., Passamonti, L., Seymour, B., Calder, A. J. et al. (2009). A Key Role for Similarity in Vicarious Reward. Science, 324, 900. https://doi.org/10.1126/science.1170539
[41]
Morelli, S. A., Lieberman, M. D., & Zaki, J. (2015). The Emerging Study of Positive Empathy. Social & Personality Psychology Compass, 9, 57-68. https://doi.org/10.1111/spc3.12157
[42]
Pascual-Marqui, R. D., Lehmann, D., & Koukkou, M. (2011). Assessing Interactions in the Brain with Exact Low-Resolution Electromagnetic Tomography. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 369, 3768-3784. https://doi.org/10.1098/rsta.2011.0081
[43]
Raichle, M. E. (2015). The Brain’s Default Mode Network. Annual Reviews Neuroscience, 38, 433-447. https://doi.org/10.1146/annurev-neuro-071013-014030
[44]
Rizzolatti, G., Cattaneo, L., Fabbri-Destro, M., & Rozzi, S. (2014). Cortical Mechanisms Underlying the Organization of Goal-Directed Actions and Mirror Neuron-Based Action Understanding. Physiological Reviews, 94, 655-706. https://doi.org/10.1152/physrev.00009.2013
[45]
Ruby, P., & Decety, J. (2003). What You Believe versus What You Think They Believe: A Neuroimaging Study of Conceptual Perspective Taking. European Journal of Neuroscience, 17, 2475-2480. https://doi.org/10.1046/j.1460-9568.2003.02673.x
[46]
Schmitz, T. W., Kawahara-Baccus, T. N., & Johnson, S. C. (2004). Metacognitive Evaluation, Self-Relevance, and the Right Prefrontal Cortex. NeuroImage, 22, 941-947. https://doi.org/10.1016/j.neuroimage.2004.02.018
[47]
Schott, B. H., Minuzzi, L., Krebs, R. M., Elmenhorst, D., Lang, M., Winz, O. H. et al. (2008). Mesolimbic Functional Magnetic Resonance Imaging Activations during Reward Anticipation Correlate with Reward-Related Ventral Striatal Dopamine Release. Journal of Neuroscience, 28, 14311-14319. https://doi.org/10.1523/JNEUROSCI.2058-08.2008
[48]
Schultz, W. (2015). Neuronal Reward and Decision Signals: From Theories to Data. Physiological Reviews, 95, 853-951. https://doi.org/10.1152/physrev.00023.2014
[49]
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H. et al. (2007). Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control. Journal of Neuroscience, 27, 2349-2356. https://doi.org/10.1523/JNEUROSCI.5587-06.2007
[50]
Shimada, S., Matsumoto, M., Takahashi, H., Yomogida, Y., & Matsumoto, K. (2016). Coordinated Activation of Premotor and Ventromedial Prefrontal Cortices during Vicarious Reward. Social Cognition & Affective Neuroscience, 11, 508-515. https://doi.org/10.1093/scan/nsv134
[51]
Singer, B., O’Doherty, H., Kaube, R. J., & Frith, C. D. (2004). Empathy for Pain Involves the Affective but Not Sensory Components of Pain. Science, 303, 1157-1162. https://doi.org/10.1126/science.1093535
[52]
Vogt, B. A., Vogt, L., & Laureys, S. (2006). Cytology and Functionally Correlated Circuits of Human Posterior Cingulate Areas. NeuroImage, 29, 452-466. https://doi.org/10.1016/j.neuroimage.2005.07.048
[53]
Wacker, J., Chavanon, M. L., & Stemmler, G. (2010). Resting EEG Signatures of Agentic Extraversion: New Results and Meta-Analytic Integration. Journal of Research in Personality, 44, 167-179. https://doi.org/10.1016/j.jrp.2009.12.004