In the relativistic mechanics, we calculate a minimal distance between the time scale of a one-dimensional motion having a larger velocity and the time scale of a similar motion with a lower velocity. Concerning the quantum theory, we demonstrate that mechanical parameters entering the electron motion in the Bohr hydrogen atom can provide us with a correct size of the time interval entering the Joule-Lenz law for the emission energy between two neighbouring quantum levels of the atom.
References
[1]
Berliner, A. and Scheel, K. (1932) Physikalisches Handwörterbuch. 2nd Edition, Springer, Berlin. https://doi.org/10.1007/978-3-642-99643-6
[2]
Landau, L.D. and Lifshits, E.M. (1948) Field Theory. OGIZ, Moscow. (In Russian)
Planck, M. (1932) Einführung in die Theorie der Wärme. S. Hirzel, Leipzig.
[5]
Einstein, A. (1917) Zur Quantentheorie der Strahlung, Physikalische Zeitschrift, 18, 121-128.
[6]
Slater, J.C. (1960) Quantum Theory of the Atomic Structure. Vol. 1, McGraw-Hill, New York.
[7]
Schiff, L.I. (1968) Quantum Mechanics. 3rd Edition, McGraw-Hill, New York.
[8]
Bohr, N. (1924) Drei Aufsätze über Spektren und Atombau. 2nd Edition, Vieweg und Sohn, Braunschweig. https://doi.org/10.1007/978-3-642-64924-0_11
[9]
Bohr, N. (1915) XXXVI. On the Series Spectrum of Hydrogen and the Structure of the Atom. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science Series 6, 29, 332-335. https://doi.org/10.1080/14786440208635311
[10]
Van der Waerden, B.L. (1967) Sources of Quantum Mechanics. Dover, New York.
[11]
Sommerfeld, A. (1931) Atombau und Spektrallinien. Vol. 1, 5th Edition, Vieweg, Braunschweig.
[12]
Lass, H. (1950) Vector and Tensor Analysis. McGraw-Hill, New York. https://doi.org/10.1119/1.1932684
[13]
Olszewski, S. (2015) Non-Probabilistic Approach to the Time of Energy Emission in Small Quantum Systems. Journal of Modern Physics, 6, 1277-1288. https://doi.org/10.4236/jmp.2015.69133
[14]
Olszewski, S. (2016) Quantum Aspects of the Joule-Lenz Law. Journal of Modern Physics, 7, 162-174. https://doi.org/10.4236/jmp.2016.71018
[15]
Olszewski, S. (2016) Emission Intensity in the Hydrogen Atom Calculated from a Non-Probabilistic Approach to the Electron Transitions. Journal of Modern Physics, 7, 827-851. https://doi.org/10.4236/jmp.2016.78076
[16]
Olszewski, S. (2016) Semiclassical and Quantum Mechanical Formalism Applied in Calculating the Emission Intensity of the Atomic Hydrogen. Journal of Modern Physics, 1004-1020. https://doi.org/10.4236/jmp.2016.79091
[17]
Olszewski, S. (2016) Erratum to “Semiclassical and Quantum-Mechanical Formalism Applied in Calculating the Emission Intensity of the Atomic Hydrogen” [Journal of Modern Physics 7 (2016) 1004-1020]. Journal of Modern Physics, 7, 2314-2315. https://doi.org/10.4236/jmp.2016.716199
[18]
Landau, L.D. and Lifshits, E.M. (1969) Mechanics. Electrodynamics, Izd. Nauka, Moscow. (in Russian)
[19]
Heisenberg, W. (1927) Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift fuer Physik, 43, 172-198. https://doi.org/10.1007/BF01397280
[20]
Schommers, W. (1989) Space-Time and Quantum Phenomena. In: Schommers, W., Ed., Quantum Theory and Pictures of Reality, Springer, Berlin, 217-277. https://doi.org/10.1007/978-3-642-95570-9
[21]
Bunge, M. (1970) The So-Called Fourth Indeterminacy Relation. Canadian Journal of Physics, 48, 1410-1411. https://doi.org/10.1139/p70-172
[22]
Isaacs, A. (1990) Concise Dictionary of Physics. Oxford University Press, Oxford.
[23]
Weinberg, S. (2013) Lectures on Quantum Mechanics. Cambridge University Press, Cambridge.
[24]
Olszewski, S. (2011) Magnetic Field Induction and Time Intervals of the Electron Transitions Calculated on a Classical and Quantum-Mechanical Way. Journal of Modern Physics, 2, 1305-1309. https://doi.org/10.4236/jmp.2011.211161
[25]
Olszewski , S. (2012) Relations between the Intervals Delta E and Delta t Obtained in the Deexcitaion Process of Electrons in Metlas. Journal of Modern Physics, 3, 217-220. https://doi.org/10.4236/jmp.2012.33030
[26]
Olszewski, S. (2012) Intervals ΔE and Δt Entering the Heisenberg Uncertainty Principle for Free Electrons and Their Limitations in the Magnetic Field. Quantum Matter, 1, 127-133. https://doi.org/10.1166/qm.2012.1010
[27]
Olszewski, S. (2016) Relationship between the Fundamental Constants of Physics Obtained from the Uncertainty Principle for Energy and Time. Journal of Modern Physics, 6, 622-626. https://doi.org/10.4236/jmp.2015.65067
[28]
Olszewski S., (2017) Circular Scale of Time and Construction of the Schrodinger Perturbation Series for Energy Made Simple. Journal of Modern Physics, 8, 1650-1684. https://doi.org/10.4236/jmp.2017.89098
[29]
Olszewski, S. (2018) Circular Time Scale Yields a Recurrent Calculation of the Schrodinger Perturbation Energy. Journal of Modern Physics, 9, 1491-1521. https://doi.org/10.4236/jmp.2018.98093
[30]
Olszewski, S. (2019) Circular Scale of Time as a Guide for the Schrödinger Perturbation Process of a Quantum-Mechanical System. World Journal of Mechanics, 9, 113-145. https://doi.org/10.4236/wjm.2019.95009