Introduction:Neisseria is a large genus of
bacteria that colonize mucosal surfaces. Of the 11 species that colonize
humans, only two are pathogens, N.
meningitidis and N. gonorrhoeae.
Both are obligate human pathogens; the last is causal agent of gonorrhea disease. Although curable with
timely antibiotic treatment, an annual incidence of more than 62 million cases
is estimated by the World Health Organization and there are no successful
vaccines available. In contrast, several prophylactic vaccine options for Neisseria meningitidis meningitis do
exist. Of note, there is trace of cross parenteral response induced between N. meningitidis and N. gonorrhoeae, and Proteoliposome (PL, also named outer membrane vesicles, OMV) vaccine has shown high
impact on this response. Objective: To determine effect of VAMENGOC-BC? and
its derivates (AFPL1 and AFCo1) at mucosal and systemic level and possible
cross response against Neisseriagonhorroeae in Balb/c and C57Bl/6 mice. Methods: We evaluated cross response against N.
gonorrhoeae in mouse serum IgG and saliva IgA after mucosal immunization
with VA-MENGOC-BC or its derivatives (AF, Adjuvant Finlay PL1 or AFCo
(cochleate) 1). Results: Immunizations with AFPL1 or AFCo1 induce anti N. gonorrhoeae at saliva IgA and serum IgG
responses similar to VA-MENGOC-BC? vaccine. Conclusions: Such data confirms a new
possible window of prime-boost vaccination strategy against gonorrhea and
extends our knowledge regarding the effect of PL vaccines on cross responses.
References
[1]
Russell, M.W., Sparling, P.F., Morrison, R.P., Cauci, S., Fidel, P.L. and Martin, D. (2005) Mucosal Immunology of Sexual Transmitted Diseases. 3rd Edition, Elsevier/Academic Press, San Diego, 1693-1720.
https://doi.org/10.1016/B978-012491543-5/50103-0
[2]
Christopher, E.T., Zhu, W., Van Dam, C.N., Lewis, L.D., Johnston, R.E. and Spartling, P.F. (2006) Vaccination of Mice with Gonococcal TbpB Expressed in Vivo from Venezuelan Equine Encephalitis Viral Replicon Particles. Infection and Immunity, 74, 1612-1620. https://doi.org/10.1128/IAI.74.3.1612-1620.2006
[3]
Price, G.A., Masri, H.P., Hollander, A.H., Russell, M.W. and Cornelissen, C.N. (2007) Gonococcal Transferring Binging Protein Chimeras Induce Bactericidal and Grow Inhibitory Antibodies in Mice. Vaccine, 25, 7247-7260.
https://doi.org/10.1016/j.vaccine.2007.07.038
[4]
Griffiths, E., Stevenson, P., Byfield, P., Ala’Aldeen, D.A., Borriello, S.P., Holland, J., Parsons, T. and Williams, T. (1993) Antigenic Relationships of Transferrin-Binding Proteins from Neisseria meningitisis, N. gonorrhoeae and Haemophilus influenzae: Cross-Reactivity of Antibodies to NH2-Terminal Peptides. FEMS Microbiological Letters, 109, 85-91. https://doi.org/10.1111/j.1574-6968.1993.tb06148.x
[5]
Pérez, O., Del Campo, J., Cuello, M., González, E., Núñez, N., Cabrera, O., Llanes, R., Acevedo, R., Zayas, C. and Balboa, J. (2009) Mucosal Approaches in Neisseria Vaccinology. VacciMonitor, 18, 53-55.
[6]
Petousis-Harris, H., Paynter, J., Morgan, J., Saxton, P., Mcardle, B., Goodyear-Smith, F. and Black, S. (2017) Effectiveness of a Group B Outer Membrane Vesicle Meningococcal Vaccine against Gonorrhoea in New Zealand: A Retrospective Case-Control Study. The Lancet, 390, 1603-1610.
https://doi.org/10.1016/S0140-6736(17)31449-6
[7]
Pérez, O., Batista-Duharte, A., González, E., Zayas, C., Balboa, J., Cuello, M., Cabrera, O., Lastre, M. and Schijns, V.E.J.C. (2012) Human Prophylactic Vaccine Adjuvants and Their Determinant Role in New Vaccine Formulations. Brazilian Journal of Medical and Biological Research, 45, 681-692.
https://doi.org/10.1590/S0100-879X2012007500067
[8]
Pérez, O., Bracho, G., Lastre, M., Del Campo, J., Gil, D., Zayas, C., Acevedo, R., González, D., López, J.A., Taboada, C. and Solis, R.L. (2004) Novel Adjuvant Based on a Proteoliposome-Derived Cochleate Structure Containing Native Lipopolysaccharide as a Pathogen-Associated Molecular Pattern. Immunology and Cell Biology, 82, 603-610. https://doi.org/10.1111/j.1440-1711.2004.01293.x
[9]
Pérez, O., Lastre, M., Cabrera, O., Del Campo, J., Bracho, G., Cuello, M., Balboa, J., Acevedo, R., Zayas, C., Gil, D., Mora, N., González, D., Pérez, R., González, E., Barberá, R., Fajardo, E.M., Sierra, G., Solís, R.L. and Campa, C. (2007) New Vaccines Require Potent Adjuvants Like AFPL1 and AFCo1. Scandinavian Journal of Immunology, 66, 271-277. https://doi.org/10.1111/j.1365-3083.2007.01981.x
[10]
Cuello, M., Cabrera, O., Acevedo, R., Nuñez, N., Del Campo, J., Lastre, Z.C., González, E., Balboa, J., Romeu, B., Thörn, K., Lindqvist, M., Persson, J., Harandi, A.M. and Pérez, O. (2009) Nasal Immunization with AFCo1 Induces Immune Response to N. gonorrhoea in Mice. VacciMonitor, 18, 76-78.
[11]
Del Campo, J., Lindqvist, M., Cuello, M., Böckström, M., Cabrerra, O., Persson, J., Pérez, O. and Harandi, A.M. (2009) Intranasal Immunization with a Proteoliposome-Derived Cochleate Containing Recombinant gD Protein Confers Protective Immunity against Genital Herpes in Mice. Vaccine, 28, 1193-1200.
https://doi.org/10.1016/j.vaccine.2009.11.035
[12]
Romeu, B., Lastre, M., Reyes, L., González, E., Borrero, Y., Lescaille, D., Pérez, R., Nuñez, D. and Pérez, O. (2014) Nasal Immunization of Mice with AFCo1 or AFPL1 Plus Capsular Polysaccharide Vi from Salmonella typhi Induces Cellular Response and Memory B and T Cell Responses. Vaccine, 5, 6971-6978.
https://doi.org/10.1016/j.vaccine.2014.10.037
[13]
Bouvet, J.P., Bélec, L., Pirès, R. and Pilot, J. (1994) Immunoglobulin G Antibodies in Human Vaginal Secretions after Parenteral Vaccination. Infection and Immunity, 62, 3957-3961. https://doi.org/10.1128/IAI.62.9.3957-3961.1994
[14]
Nardelli-Haefliger, D., Roden, R., Balmelli, C., Potts, A., Shiller, J. and Grandi, P.D. (1999) Mucosal but Not Parenteral Immunization with Purified Human Papillomavirus Type 16 Virus-Like Particles Induce Neutralizing Titles of Antibodies throughout the Estrous Cycle of Mice. Journal of Virology, 73, 9609-9613.
https://doi.org/10.1128/JVI.73.11.9609-9613.1999
[15]
Broliden, K., Hinkula, J., Devito, C., Kiama, P., Kimani, J., Trabbatoni, D., Bwayo, J.J., Clerici, M., Plummer, F. and Kaul, R. (2001) Functional HIV-1 Specific IgA Antibodies in HIV-1 Exposed, Persistently IgG Seronegative Female Sex Workers. Immunology Letters, 79, 29-36. https://doi.org/10.1016/S0165-2478(01)00263-2
[16]
Brunham, R.C. (1983) Recognition and Treatment of Chlamydial Infections from Birth to Adolescence. Infection and Immunity, 39, 1491-1494.
[17]
Gallichan, W.S. and Rosenthal, K.L. (1995) Specific Secretory Immune Response in the Female Genital Tract Following Intranasal Immunization with a Recombinant Adenovirus Expressing Glycoprotein B of Herpes Simplex Virus. Vaccine, 13, 1589-1595. https://doi.org/10.1016/0264-410X(95)00100-F
[18]
Wu, H.Y., Abdu, S., Stinson, D. and Russell, M.W. (2000) Generation of Female Genital Tract Antibody Responses by Local or Central (Common) Mucosal Immunization. Infection and Immunity, 68, 5539-5545.
https://doi.org/10.1128/IAI.68.10.5539-5545.2000
[19]
Wu, H.Y. and Russell, M.W. (1998) Induction of Mucosal and Systemic Immune Responses by Intranasal Immunization Using Recombinant Cholera Toxin B Subunit as an Adjuvant. Vaccine, 16, 286-292.
https://doi.org/10.1016/S0264-410X(97)00168-0
[20]
Bergquist, C.E., Johansson, E.L., Lagergård, T., Holmgren, J. and Arudin, A. (1997) Intranasal Vaccination of Humans with Recombinant Cholera Toxin B Subunit Induces Systemic and Local Antibody Responses in the Upper Respiratory Tract and the Vagina. Infection and Immunity, 65, 2676-2684.
[21]
Rudin, A., Riise, G.C. and Holmgren, J. (1999) Antibody Responses in the Lower Respiratory Tract and Male Urogenital Tract in Humans after Nasal and Oral Vaccination with Cholera Toxin B Subunit. Infection and Immunity, 67, 2884-2890.
https://doi.org/10.1128/IAI.67.6.2884-2890.1999
[22]
Pérez, O. and Harandi, A. (2008) 4th International Workshop on Vaccine Adjuvant and Parasitic Vaccines (Adjuvant 2008). Expert Review of Vaccines, 7, 151-1153.
https://doi.org/10.1586/14760584.7.8.1151
[23]
Del Campo, J., Lastre, M., Zayas, C., Acevedo, R., González, E., Romeu, B., Cuello, M., Cabrera, O., Balboa, J., Harandi, A.M. and Pérez, O. (2009) Mucosal Immune Response Induced by Proteoliposome and Cochleate Derived from Serogroups B N. Meningitidis. VacciMonitor, 18, 71-74.
[24]
Pérez, O., Romeu, B., Cabrera, O., González, E., Batista-Duharte, A., Labrada, A., Pérez, R., Reyes, L.M., Ramírez, W., Sifontes, S., Fernández, N. and Lastre, M. (2013) Adjuvants Are Key Factors for the Development of Future Vaccines: Lessons from the Finlay Adjuvant Platform. Frontiers in Immunology, 4, 407.
https://doi.org/10.3389/fimmu.2013.00407
[25]
Cuello, M., Cabrera, O., Acevedo, R., Nuñez, N., Campo, J.D., Lastre, M., Zayas, C., González, E., Balboa, J., Romeu, B., Thörn, K., Lindqvist M, Persson, J., Harandi, A.M. and Pérez, O. (2009) Nasal Immunization with AFCo1 Induces Immune Response to N. gonorrhoea in Mice. VacciMonitor, 18, 76-78.
[26]
Ochoa-Azze, R.F. (2018) Cross-Protection Induced by VA-MENGOC-BC® Vaccine. Human Vaccines & Immunotherapeutics, 14, 1064-1068.
https://doi.org/10.1080/21645515.2018.1438028
[27]
Sierra-González, V.G. (2019) Cuban Meningococcal Vaccine VA-MENGOC-BC: 30 Years of Use and Future Potential. MEDICC Review, 21, 19-27.
https://doi.org/10.37757/MR2019.V21.N4.4
[28]
Uli, L., Castellanos-Serra, L., Betancourt, L., Domínguez, F., Barberá, R., Sotolongo, F., Guillén, G. and Pajón, R. (2006) Outer Membrane Vesicles of the VAMENGOC-BC Vaccine against Serogroup B of Neisseria meningitidis: Analysis of Protein Components by Two-Dimensional Gel Electrophoresis and Mass Spectrometry. Proteomics, 6, 3389-3399. https://doi.org/10.1002/pmic.200500502
[29]
Vipond, C., Suker, J., Jones, C., Tang, C., Feavers, I.M. and Wheeler, J.X. (2006) Proteomic Analysis of a Meningococcal Outer Membrane Vesicle Vaccine Prepared from the Group B Strain NZ98/254. Proteomics, 6, 3400-3413.
https://doi.org/10.1002/pmic.200500821
[30]
Gil, J., Betancourt, L.H., Sardínas, G., Yero, D., Niebla, O., Delgado, M., García, D., Pajón, R., Sánchez, A. and González, L.J. (2009) Proteomic Study via a Non-Gel Based Approach of Meningococcal Outer Membrane Vesicle Vaccine Obtained from Strain CU385: A Road Map for Discovering New Antigens. Human Vaccine, 5, 347-56. https://doi.org/10.4161/hv.5.5.7367
[31]
Pérez, O., Lastre, M., Lapinet, J., Bracho, G., Padrón, J., Díaz, M., Zayas, C., Taboada, C. and Sierra, G. (2001) Immune Response Induction and New Effector Mechanisms Possibly Involved in Protection of Cuban Anti-Meningococcal BC Vaccine. Infection and Immunity, 69, 4502-4508.
https://doi.org/10.1128/IAI.69.7.4502-4508.2001
[32]
Troncoso, G., Sánchez, S., Criado, M.T. and Ferreirós, C.M. (2002) Analysis of Neisseria lactamica Antigens Putatively Implicated in Acquisition of Natural Immunity to Neisseria meningitidis. FEMS Immunology & Medical Microbiology, 34, 9-15. https://doi.org/10.1111/j.1574-695X.2002.tb00597.x
[33]
Marri, P.R., Paniscus, M., Weyand, N.J., Rendon, M.A., Calton, C.M. and Hernandez, D.R. (2010) Genome Sequencing Reveals Widespread Virulence Gene Exchange among Human Neisseria Species. PLoS ONE, 5, e11835.
https://doi.org/10.1371/journal.pone.0011835