全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Analysis of R134a Organic Regenerative Cycle

DOI: 10.4236/jpee.2020.85003, PP. 32-45

Keywords: Solar Energy, Regenerative Organic Rankine Cycle, R134a Refrigerant

Full-Text   Cite this paper   Add to My Lib

Abstract:

The analysis of organic regenerative cycles is necessary to verify the possibilities of increasing the work and efficiency of a thermodynamic cycle according to some control parameters. The results obtained from this work can be beneficial in several areas such as solar thermal energy. Simulations of an organic regenerative cycle with up to 4 extractions were carried out in order to analyze the behavior of maximum efficiency and the work generated in the turbine. R134a was used as an organic fluid, used in low temperature cycles. Evaporation temperature data between 60°C and 100°C and superheat temperatures equal to 120°C, 200°C and 300°C were tested for cycle analysis. Thus, it was possible to verify the work behavior and maximum efficiency depending on the number of extractions, superheating temperature and evaporation temperature. The models and simulations were made using the Engineering Equation Solver (EES) software and the results were analyzed in Excel. It was concluded that the maximum efficiency increases with the increase of the evaporation temperature and the number of extractions and decreases with the increase of the superheat temperature. The turbine work grows by increasing the evaporation and superheat temperatures, but decreases with the increase in extractions.

References

[1]  Habibi, H., Chitsaz, A., Javaherdeh, K., Zoghi, M. and Ayazpour, M. (2018) Thermo-Economic Analysis and Optimization of a Solar Driven Ammonia-Water Regenerative Rankine Cycle and LNG Cold Energy. Energy, 149, 147-160.
https://doi.org/10.1016/j.energy.2018.01.157
[2]  Imran, M., Park, B.S., Kim, H.J., Lee, D.H., Usman, M. and Heo, M. (2014) Thermo-Economic Optimization of Regenerative Organic Rankine Cycle for Waste Heat Recovery Applications. Energy Conversion and Management, 87, 107-118.
https://doi.org/10.1016/j.enconman.2014.06.091
[3]  Bejan, A. (1988) Advanced Engineering Thermodynamics. John Wiley & Sons, Hoboken.
[4]  Su, W., Zhao, L. and Deng, S. (2017) Developing a Performance Evaluation Model of Organic Rankine Cycle for Working Fluids Based on the Group Contribution Method. Energy Conversion and Management, 132, 307-315.
https://doi.org/10.1016/j.enconman.2016.11.040
[5]  Rahbar, K., Mahmoud, S., Al-Dadah, R.K., Moazami, N. and Mirhadizadeh, S.A. (2017) Review of Organic Rankine Cycle for Small-Scale Applications. Energy Conversion and Management, 134, 135-155.
https://doi.org/10.1016/j.enconman.2016.12.023
[6]  Mishra, R.S. and Khan, Y. (2018) Thermodynamic Analysis of ORC Based Thermal Power Plant for Performance Improvement: A Review. International Journal of Research in Engineering and Innovation, 2, 306-324.
[7]  Vieira da Cunha, A.F. and Fraidenraich, N. (2012) Análise Do Rendimento ótimo De Um Ciclo Regenerativo Com Uma, Duas e Três Extrações da Turbina. CONEM, São Luis.
[8]  Velez, F. (2012) A Technical Economical and Market Review of Organic Rankine Cycles for Conversion of Low Grade Heat of Power Generation. Renewable and Sustainable Energy Reviews, 16, 4175-4189.
https://doi.org/10.1016/j.rser.2012.03.022
[9]  He, Y.-L., Mei, D.-H., Tao, W.-Q., Yang, W.-W. and Liu, Y.-L. (2012) Simulation of the Parabolic Trough Solar Energy Generation System with Organic Rankine Cycle. Apply Energy, 97, 630-641.
https://doi.org/10.1016/j.apenergy.2012.02.047
[10]  Gang, P., Li, J. and Ji, J. (2010) Analysis of Low Temperature Solar Thermal Electric Generation Using Regenerative Organic Rankine Cycle. Applied Thermal Engineering, 30, 998-1004.
https://doi.org/10.1016/j.applthermaleng.2010.01.011
[11]  Wylen, G.J. and Sonntag, R.E. (1993) Fundamentos da Termodinamica Clássica. 3rd Edição, Edgard Blucher, São Paulo.
[12]  Silva, L.S. (2015) Análise de ciclos regenerativos em centrais térmicas solares considerando a máxima eficiência do ciclo. Trabalho de Conclusão de Curso, Eng Mecanica, UFPE.
[13]  Bao, J.J. and Zhao, L. (2013) A Review of Working Fluid and Expander Selections for Organic Rankine Cycle. Renewable and Sustainable Energy Reviews, 24, 325-342.
https://doi.org/10.1016/j.rser.2013.03.040
[14]  Baral, S. and Kim, C.K. (2014) Thermodynamic Modeling of the Solar Organic Rankine Cycle with Selected Organic Working Fluids for Cogeneration. Distributed Generation & Alternative Energy Journal, 29, 7-34.
https://doi.org/10.1080/21563306.2014.10879015
[15]  Lakew, A.A. and Bolland, O. (2010) Working Fluids for Low-Temperature Heat Source. Applied Thermal Engineering, 30, 1262-1268.
https://doi.org/10.1016/j.applthermaleng.2010.02.009
[16]  Sauret, E. and Rowlands, A.S. (2011) Candidate Radial-Inflow Turbines and High-Density Working Fluids for Geothermal Power Systems. Energy, 36, 4460-4467.
https://doi.org/10.1016/j.energy.2011.03.076
[17]  Gu, Z.L. and Sato, H. (2002) Performance of Supercritical Cycles for Geothermal Binary Design. Energy Conversion and Management, 43, 961-971.
https://doi.org/10.1016/S0196-8904(01)00082-6
[18]  Huber, M.L. and Mclinden, M.O. (1992) Thermodynamic Properties of R134a: 1,1,1,2-Tetrafluoroethane. International Refrigeration and Air Conditioning Conference, Indiana, April 1992, Paper 184.
[19]  Haywood, R.W. (1949) A Generalized Analysis of the Regenerative Steam Cycle for Finite Number of heaters. Proceedings of the Institution of Mechanical Engineers, 161, 157-162.
https://doi.org/10.1243/PIME_PROC_1949_161_016_02
[20]  Souza, Z. (1980) Elementos de Máquinas Térmicas. Campus, São Paulo.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133