全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Production of Soybean Oil Nanoemulsion (SONE) and Evaluation of Angiogenic and Embryotoxic Activity

DOI: 10.4236/jbnb.2020.113010, PP. 161-178

Keywords: Soybean Oil, Angiogenesis Inducing Agents, Toxicity, Biotechnology, Nanotechnology

Full-Text   Cite this paper   Add to My Lib

Abstract:

The SONE oil/water was prepared using the pseudo-ternary phase diagram, using a low energy method with phase inversion by changing the composition. In order to optimize the preparation of SONE, three speeds were used in the agitator arm and two different rods. The particle size and polydispersity index were determined by Dynamic Light Scattering (DLS) and the stability test by the freeze-thaw cycle. Angiogenesis in chicken embryo egg chorioallantoic membrane and zebrafish (Danio rerio) embryotoxicity was performed. The lower stirring speed and propeller shaft induced smaller particle size (550.2 nm). Regarding angiogenesis, there was a statistically significant difference for all the evaluated parameters (length, caliber, junctions, and number of blood vessel complexes) and the result was higher in SONE when compared to the inhibition control (Dexamethasone), but lower than the induction control (Regederm®) and there was no statistically significant difference between SONE and distilled water. It was observed that the exposure of the zebrafish embryos to SONE caused an increase in the mortality rate dependent on time and concentration. The LC50 for SONE decreased statistically with increasing exposure (p-value = 0.046). Heart rate decreased significantly with increasing concentration at all exposure times (p-value < 0.05), as a result of progressive embryo mortality. The hatching rate was late until the concentration of 0.0193 mg/mL and no hatching rate was verified from that concentration. Exposure of zebrafish embryos to different concentrations of SONE induced malformations such as spinal changes, pericardial edema and yolk sac edema, but there was no significant difference in the malformation rate of embryos exposed to SONE when compared to the control group. The SONE produced remained stable in the freeze-thaw cycle, with changes only in pH. Despite the low results for embryotoxicity, further studies are needed, aiming at the ideal formulation for angiogenesis purposes.

References

[1]  The American Soybean Association.
https://soygrowers.com
[2]  Amaral, L., Jaigobind, S.J. and Jaigobind, A.G.A. (2006) Technical Dossier Submitted to the Brazilian Technical Response Service (SBRT) Soy Oil. Paraná Institute of Technology.
http://www.sbrt.ibict.br
[3]  Zong, J., Jiang, J., Shi, P., Liu, J., Wang, W., Li, B., Zhao, T., Pan, T., Zhang, Z., Bi, L., Diao, Y. and Wang, S. (2020) Fatty Acid Extracts Facilitate Cutaneous Wound Healing through Activating AKT, ERK, and TGF-β/Smad3 Signaling and Promoting Angiogenesis. American Journal of Translational Research, 12, 478-492.
[4]  Pazyar, N., Yaghoobi, R., Rafiee, E., Mehrabian, A. and Feily, A. (2014) Skin Wound Healing and Phytomedicine: A Review. Skin Pharmacology and Physiology, 27, 303-310.
https://doi.org/10.1159/000357477
[5]  Lin, T.K., Zhong, L. and Santiago, J.L. (2017) Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. International Journal of Molecular Sciences, 19, 1-22.
https://doi.org/10.3390/ijms19010070
[6]  Aysan, E., Bektas, H., Kaygusuz, A. and Huq, G.E. (2009) A New Approach for Decreasing Postoperative Peritoneal Adhesions: Preventing Peritoneal Trauma with Soybean Oil. Journal of Investigative Surgery, 22, 275-280.
https://doi.org/10.1080/08941930903040148
[7]  Manhezi, A.C., Bachion, M.M. and Pereira, A.L. (2008) Utilização de ácidos graxos essenciais no tratamento de feridas. Revista Brasileira de Enfermagem, 61, 620-628.
https://doi.org/10.1590/S0034-71672008000500015
[8]  Han, K.B., Takagi, C., Wu, C.J, Mizukami, H. and Ostafin, A. (2016) Synthesis of Calcium Phosphate Controllable Coating Thickness on Oil-in-Water Nanoemulsion with Performance of Oxygen Release as Oxygen Carrier. Journal of Biomaterials and Nanobiotechnology, 7, 55-63.
https://doi.org/10.4236/jbnb.2016.72007
[9]  Patnaik, S., Aditha, S.K., Rattan, T. and Kamisetti, V. (2015) Aceclofenac-Soluplus Nanocomposites for Increased Bioavailability. Soft Nanoscience Letters, 5, 13-20.
https://doi.org/10.4236/snl.2015.52003
[10]  Lovelyn, C. and Attama, A.A. (2011) Current State of Nanoemulsions in Drug Delivery. Journal of Biomaterials and Nanobiotechnology, 2, 626-639.
https://doi.org/10.4236/jbnb.2011.225075
[11]  Dumitrescu, E., Wallace, K. and Andreescu, S. (2019) Nanotoxicity Assessment Using Embryonic Zebrafish. Methods in Molecular Biology, 1894, 331-343.
https://doi.org/10.1007/978-1-4939-8916-4_20
[12]  Qian, L., Cui, F., Yang, Y., Liu, Y., Qi, S. and Wang, C. (2018) Mechanisms of Developmental Toxicity in Zebrafish Embryos (Danio rerio) Induced by Boscalid. Science of the Total Environment, 634, 478-487.
https://doi.org/10.1016/j.scitotenv.2018.04.012
[13]  Thiagarajan, S.K., Rama Krishnan, K., Ei, T., Husna Shafie, N., Arapoc, D.J. and Bahari, H. (2019) Evaluation of the Effect of Aqueous Momordica charantia Linn. Extract on Zebrafish Embryo Model through Acute Toxicity Assay Assessment. Evidence-Based Complementary and Alternative Medicine, 2019, Article ID: 9152757.
https://doi.org/10.1155/2019/9152757
[14]  Solans, C. and Solé, I. (2012) Nano-Emulsions: Formation by Low-Energy Methods. Current Opinion in Colloid & Interface Science, 17, 246-254.
https://doi.org/10.1016/j.cocis.2012.07.003
[15]  Rocha-filho, P.A., Maruno, M., Oliveira, B., Bernard, D.S., Gumiero, V.C. and Pereira, T.A. (2014) Nanoemulsions as a Vehicle for Drugs and Cosmetics. NanoScience and Technology, 1, 5.
[16]  Idson, B. (1993) Stability Testing of Emulsions. Drug and Cosmetic Industry, 142, 27-30.
[17]  Tomaszewska, E., Soliwoda, K., Kadziola, K., Tkacz-Szczesna, B., Celichowski, G., Cichomski, M., Szmaja, W. and Grobelny, J. (2013) Detection Limits of DLS and UV-vis Spectroscopy in Characterization of Polydisperse Nanoparticles Colloids. Journal of Nanomaterials, 2013, Article ID: 313081.
https://doi.org/10.1155/2013/313081
[18]  Rocha-Filho, P.A., Camargo, M.F.P., Ferrari, M. and Maruno, M. (2014) Influence of Lavander Essential Oil Addition on Passion Fruit Oil Nanoemulsions: Stability and in Vivo Study. Journal of Nanomedicine & Nanotechnology, 5, 198.
[19]  National Health Surveillance Agency (2010) Brazilian Pharmacopoeia.
http://portal.anvisa.gov.br/documents/33832/260079/5%C2%AA+edi%C3%A7%C3%A3o+
-+Volume+1/4c530f86-fe83-4c4a-b907-6a96b5c2d2fc
[20]  National Health Surveillance Agency (2004) Stability Guide for Cosmetic Products.
http://portal.anvisa.gov.br/documents/106351/107910/Guia+de+Estabilidade+de+Produtos
+Cosm%C3%A9ticos/49cdf34c-b697-4af3-8647-dcb600f753e2
[21]  Almeida, L.M., Bailão, E.F.L.C., Pereira, I.R., Ferreira, F.A., D’Abadia, P.L., Borges, F.S.M., Lino-Júnior, R.S., de Melo-Reis, P.R. and Gonçalves, P.J. (2019) Antiangiogenic Potential of Jatropha curcas Latex in the Chick Chorioallantoic Membrane Model. Scientia Medica, 29, e32157.
https://doi.org/10.15448/1980-6108.2019.1.32157
[22]  Araújo, L.A., Assunção, L.A., Silva-Júnior, N.J., Lemes, S.R. and Melo-Reis, P.R. (2015) Angiogenic Activity of Sucupira (Pterodon emarginatus) Oil. Scientia Medica, 25, 1-7.
https://doi.org/10.15448/1980-6108.2015.2.20351
[23]  Organization for Economic Cooperation and Development (OECD) (2013) Test No. 236: Fish Embryo Acute Toxicity (FET) Test. OECD Guidelines for the Testing of Chemicals, Section 2. OECD Publishing, Paris.
[24]  Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. and Schilling, T.F. (1995) Stages of Embryonic Development of the Zebrafish. Developmental Dynamics, 203, 255-310.
https://doi.org/10.1002/aja.1002030302
[25]  Razali, N.M. and Wah, Y.B. (2011) Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests. J Stat Model Analytics, 2, 21-33.
[26]  Kruskal, W.H. and Wallis, A. (1952) Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47, 583-621.
https://doi.org/10.1080/01621459.1952.10483441
[27]  Dunn, O.J. (1964) Multiple Comparisons Using Rank Sums. Technometrics, 6, 241-252.
https://doi.org/10.1080/00401706.1964.10490181
[28]  Masmoudi, H., Le dréau, Y., Piccerelle, P. and Kister, J. (2005) The Evaluation of Cosmetic and Pharmaceutical Emulsions Aging Process Using Classical Techniques and a New Method: FTIR. International Journal of Pharmaceutics, 289, 117-131.
https://doi.org/10.1016/j.ijpharm.2004.10.020
[29]  Togniolo, V., Azzini, R.G. and Rocha-Filho, P.A. (1999) Oil-Water-Oil (O-W-O) Multiple Emulsions: Multiplicity Control by Fluorescent Probe. Bolletino Chimico Farmaceutico, 138, 156-159.
[30]  Bernardi, D.S., Pereira, T.A., Maciel, N.R., Bortoloto, J., Viera, G.S., Oliveira, G.C. and Rocha-Filho, P.A. (2011) Formation and Stability of Oil-in-Water Nanoemulsions Containing Rice Bran Oil: In Vitro and in Vivo Assessments. Journal of Nanobiotechnology, 28, 44.
https://doi.org/10.1186/1477-3155-9-44
[31]  Pereira, T., Guerreiro, C., Maruno, M., Ferrari, M. and Rocha-filho, P.A. (2016) Exotic Vegetable Oils for Cosmetic O/W Nanoemulsions: In Vivo Evaluation. Molecules, 21, 1-16.
https://doi.org/10.3390/molecules21030248
[32]  Tadros, T., Izquierdo, P., Esquena, J. and Solans, C. (2004) Formation and Stability of Nanoemulsions. Advances in Colloid and Interface Science, 108, 303-318.
https://doi.org/10.1016/j.cis.2003.10.023
[33]  Dias, D.O., Colombo, M., Kelmann, R.G., Kaiser, S., Lucca, L.G., Teixeira, H.F., Limbergera, R.P., Veiga Jr., V.F. and Koestera, L.S. (2014) Optimization of Copaiba Oil-Based Nanoemulsions Obtained by Different Preparation Methods. Industrial Crops and Products, 59, 154-162.
https://doi.org/10.1016/j.indcrop.2014.05.007
[34]  Leong, W.F., Lai, O.M., Long, K., Man, Y.B.C., Misran, M. and Tan, C.P. (2011) Preparation and Characterisation of Water-Soluble Phytosterol Nanodispersions. Food Chemistry, 129, 77-83.
https://doi.org/10.1016/j.foodchem.2011.04.027
[35]  Betzler, O.S.L., Matos, A.P.D.S., Cardoso, V.D.S., Villanova, J.C.O., Guimarães, B.D.C.L.R., Dos Santos, E.P., Beatriz Vermelho, A., Santos-Oliveira, R. and Ricci Junior, E. (2019) Clove Oil Nanoemulsion Showed Potent Inhibitory Effect against Candida spp. Nanotecnologia, 30, Article ID: 425101.
https://doi.org/10.1088/1361-6528/ab30c1
[36]  Sugumar, S., Ghosh, V., Nirmala, M.J., Mukherjee, A. and Chandrasekaran, N. (2014) Ultrasonic Emulsification of Eucalyptus Oil Nanoemulsion: Antibacterial Activity against Staphylococcus aureus and Wound Healing Activity in Wistar Rats. Ultrasonics Sonochemistry, 21, 1044-1049.
https://doi.org/10.1016/j.ultsonch.2013.10.021
[37]  Alam, P., Ansari, M.J., Anwer, M.K., Raish, M., Kamal, Y.K.T. and Shakeel, F. (2017) Wound Healing Effects of Nanoemulsion Containing Clove Essential Oil. Artificial Cells, Nanomedicine, and Biotechnology, 45, 591-597.
https://doi.org/10.3109/21691401.2016.1163716
[38]  Alam, P., Shakeel, F., Anwer, M.K., Foudah, A.I. and Alqarni, M.H. (2018) Wound Healing Study of Eucalyptus Essential Oil Containing Nanoemulsion in Rat Model. Journal of Oleo Science, 67, 957-968.
https://doi.org/10.5650/jos.ess18005
[39]  Tayeb, H.H. and Sainsbury, F. (2018) Nanoemulsions in Drug Delivery: Formulation to Medical Application. Nanomedicine (Lond), 13, 2507-2525.
https://doi.org/10.2217/nnm-2018-0088
[40]  Lacave, J.M., Retuerto, A., Vicario-Parés, U., Gilliland, D., Oron, M., Cajaraville, M.P. and Orbea, A. (2016) Effects of Metal-Bearing Nanoparticles (Ag, Au, CdS, ZnO, SiO2) on Developing Zebrafish Embryos. Nanotechnology, 27, Article ID: 325102.
https://doi.org/10.1088/0957-4484/27/32/325102
[41]  Dahme, T., Katus, H.A. and Rottbauer, W. (2009) Fishing for the Genetic Basis of Cardiovascular Disease. Disease Models & Mechanisms, 2, 18-22.
https://doi.org/10.1242/dmm.000687
[42]  Ahmad, F., Liu, X., Zhou, Y. and Yao, H. (2015) An in Vivo Evaluation of Acute Toxicity of Cobalt Ferrite (CoFe2O4) Nanoparticles in Larval-Embryo Zebrafish (Danio rerio). Aquatic Toxicology, 166, 21-28.
https://doi.org/10.1016/j.aquatox.2015.07.003
[43]  Zhang, Y., Sheedy, C., Nilsson, D. and Goss, G.G. (2020) Evaluation of Interactive Effects of UV Light and Nano Encapsulation on the Toxicity of Azoxystrobin on Zebrafish. Nanotoxicology, 14, 232-249.
https://doi.org/10.1080/17435390.2019.1690064
[44]  Samaee, S.M., Manteghi, N., Yokel, R.A. and Mohajeri-Tehrani, M.R. (2018) Morphometric Characteristics and Time to Hatch as Efficacious Indicators for Potential Nanotoxicity Assay in Zebrafish. Environmental Toxicology and Chemistry, 37, 3063-3076.
https://doi.org/10.1002/etc.4266
[45]  Bai, W., Tian, W., Zhang, Z., He, X., Ma, Y., Liu, N. and Chai, Z. (2010) Effects of Copper Nanoparticles on the Development of Zebrafish Embryos. Journal of Nanoscience and Nanotechnology, 10, 8670-8676.
https://doi.org/10.1166/jnn.2010.2686
[46]  Lee, W.S., Cho, H.J., Kim, E., Huh, Y.H., Kim, H.J., Kim, B., Kang, T., Lee, J.S. and Jeong, J. (2019) Bioaccumulation of Polystyrene Nanoplastics and Their Effect on the Toxicity of Au Ions in Zebrafish Embryos. Nanoscale, 11, 3173-3185.
https://doi.org/10.1039/C8NR09321K
[47]  Pitt, J.A., Kozal, J.S., Jayasundara, N., Massarsky, A., Trevisan, R., Geitner, N., Wiesnerd, M., Levine, E.D. and Di Giulio, R.T. (2018) Uptake, Tissue Distribution, and Toxicity of Polystyrene Nanoparticles in Developing Zebrafish (Danio rerio). Aquatic Toxicology, 194, 185-194.
https://doi.org/10.1016/j.aquatox.2017.11.017

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133