全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Modeling and Numerical Simulation of Heat Transfers in a Metallic Pressure Cooker Isolated with Kapok Wool

DOI: 10.4236/mnsms.2020.102002, PP. 15-30

Keywords: Pressure Cooker, Kapok Wool, Heat Transfers, Modeling, Nodal Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work, a numerical study of heat transfers in a metallic pressure cooker isolated with kapok wool was carried out. This equipment works like a thermos, allowing finishing cooking meals only thanks to the heat stored at the beginning of cooking, which generates energy savings. Cooked meals are also kept hot for long hours. In our previous work, we have highlighted the performances of the pressure cooker when making common dishes in Burkina Faso. Also, the parameters (thickness and density) of the insulating matrix allowing having such performances as well as the influence of the climatic conditions on the pressure cooker operation were analyzed in detail in this present work. The numerical methodology is based on the nodal method and the transfer equations obtained by making an energy balance on each node have been discretized using an implicit scheme with finite differences and resolved by the Gauss algorithm. Numerical results validated experimentally show that the thickness of the kapok wool as well as its density play an important role in the pressure cooker operation. In addition, equipment performances are very little influenced by the weather conditions of the city of Ouagadougou (Burkina Faso).

References

[1]  Voumbo, M.L., Wereme, A., Gaye, S., Adj, M. and Sissoko, G. (2008) Caractérisation des propriétés thermophysiques du kapok. Research Journal of Applied Sciences. Engineering and Technology, 8, 33-43.
[2]  Damfeu, J.C., Meukama, P. and Jannotb, Y. (2016) Modelling and Measuring of the Thermal Properties of Insulating Vegetable Fibers by the Asymmetrical Hot Plate Method and the Radial Flux Method: Kapok, Coconut, Groundnut Shell Fiber and Rattan. Thermochemical Acta, 630, 64-77.
https://doi.org/10.1016/j.tca.2016.02.007
[3]  Wereme, A., Tamba, S., Sarr, M., Diene, A., Diagne, I., Niang, F. and Sissoko, G. (2010) Caractérisation des isolants thermiques locaux de type sciure de bois et kapok: Mesure de coefficient global d’échange thermique de la conductivité ther- mique. Jounal des Sciences, 10, 39-46.
[4]  Wang, F. (2009) Comparisons of Thermal and Evaporative Resistances of Kapok Coats and Traditional Down Coats. Fibres & Textiles in Eastern Europe, 18, 88-92.
[5]  Nooruddin, M.F. and Puad, N.H.A. (2014) Effectiveness of Kapok Fiber (Ceiba pentandra) as Roof Insulation for Residential Buildings in Hot Climate. Australian Journal of Basic and Applied Sciences, 5, 86-91.
[6]  Adulkareem, S., Ougounmodede, S., Aweda, J.O., Abdulrahim, A.T., Ajiboye, T.K., Ahmed, I.L. and Adebisi, J.A. (2016) Investigation of Thermal Insulation Properties of Biomass Composites. International Journal of Technology, 7, 989-9996.
https://doi.org/10.14716/ijtech.v7i6.3317
[7]  Ouedraogo, D.D., Igo, S.W., Compaore, A., Sawadogo, G.L., Zeghmati, B. and Chesneau, X. (2020) Experimental Study of a Metallic Pressure Cooker Insulated with Kapok Wool. Energy and Power Engineering, 12, 73-87.
https://doi.org/10.4236/epe.2020.122006
[8]  Lagonotte, E.P., Broussely, M., Bertin, Y. and Saulnier, J.-B. (2001) Improvement of Thermal Nodal Models with Negative Compensation Capacitors. European Physics Journal of Applied Sciences, 13, 177-194.
https://doi.org/10.1051/epjap:2001132
[9]  Boyer, H., Chabriat, J.P., Grondin-Perez, B., Grodin-Perez, C. and Tourrand, J.B. (1996) Thermal Building Simulation and Computer Generation of Nodal Models. Building and Environment, 31, 2007-2014.
https://doi.org/10.1016/0360-1323(96)00001-7
[10]  Nganyaa, T., Ladevie, B., Kemajou, A. and Mba, L. (2012) Elaboration of a Bioclimatic House in Humid Tropical Region: Case of the Town of Douala-Cameroon. Energy and Buildings, 54, 105-110.
https://doi.org/10.1016/j.enbuild.2012.07.025
[11]  Jolliet, O. (1988) Modélisation du comportment thermique d’une serre horticole: Modèle statique de seconde géneration tenant compte des apports solaires, du vent, des echanges radiatifs avec le ciel. Thèse de doctorat d’ ingénieur Physicien EPF.
[12]  Bekkouche, S.M.E.A. (2009) Modélisation du Comportement Thermique de Quelques Dispositifs Solaires. Thèse de Doctorat en Physique, Université Abou-Bakr Belkaid de Tlemcen.
[13]  Chu, Churchill, S.W. and Humbert, H.S. (1975) Correlating Equations for Laminar and Turbulent Free Convection from a Vertical Plate. International Journal of Heat and Mass Transfer, 18, 323-1329.
https://doi.org/10.1016/0017-9310(75)90243-4
[14]  Churchill, S.W. and Usagi, R. (1972) A General Expression for the Correlation of Rates of Transfer and Other Phenomena. AlChE Journal, 18, 1121-1128.
https://doi.org/10.1002/aic.690180606
[15]  Incroprera and DeWitt, D. (2002) Fundamentals of Heat and Mass Transfer. 16th Edition, John Wiley & Son, Hoboken.
[16]  Ivanova, S.M. (2013) Estimation of Background Diffuse Irradiance on Orthogonal Surfaces under Partially Obstructed Anisotropic Sky Part I: Vertical Surfaces. Solar Energy, 95, 376-391.
https://doi.org/10.1109/9.402235
[17]  Ramírez-Faz, J., Lopez-Luque, R. and Casares, F.J. (2015) Development of Synthetic Hemispheric Projections Suitable for Assessing the Sky View Factor on Vertical Planes. Renewable Energy, 7, 279-286.
https://doi.org/10.1016/j.renene.2014.08.025
[18]  Oudjedi, S., Boubghal, A., Braham Chaouch, W., Chergui, T. and Belhamri, A. (2008) Etude paramétrique d’un capteur solaire plan à air destiné au séchage. (Partie: 2). Revue des Energies Renouvelables SMSTS’08, Alger, 255.
[19]  Compaore, A., Dianda, B., Nana, G., Bathiebo, D.J., Zeghmati, B., Chesneau, X. and Abide, S. (2018) Modeling of Heat Transfer in a Habitat Built in Local Materials in Dry Tropical Climate. Physical Science International Journal, 17, 1-11.
https://doi.org/10.9734/PSIJ/2018/38931

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133