全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于链分解的多标签分类属性约简
Attribute Reduction for Multi-Label Classification Based on Chain Decomposition

DOI: 10.12677/HJDM.2020.104025, PP. 240-246

Keywords: 多标签分类,属性约简,粗糙集,链分解
Attribute Reduction
, Rough Set, Multi-Label Classification, Chain Decomposition

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文提出了基于链分解的多标签属性约简方法。通过考虑标签之间的相关性,将标签进行排序,根据排序方法,多标签问题被分解成单标签链的形式,对于链中每一个子问题通过粗糙集方法重新定义下近似、正域、依赖度,并进行属性约简。实验结果表明,该方法能在不降低分类精度的情况下去除大部分冗余属性。
In this paper, a new multi-label attribute reduction algorithm based on the chain decomposition is proposed. Considering the correlation between the labels, the labels are sorted. According to the sorting method, the multi-label problem is decomposed into a single-label problem chain. For each sub-problem, the lower approximation, the positive region and the dependency are redefined by the rough set method, and the attributes are reduced. Experimental results show that the algo-rithm can remove most of the redundant attributes without reducing the classification accuracy.

References

[1]  Read, J., Pfahringer, B., Holmes, G. and Frank, E. (2009) Classifier Chains for Multi-Label Classification. In: Buntine, W., Grobelnik, M. and Shawe-Taylor, J., Eds., Lecture Notes in Artificial Intelligence 5782, Springer, Berlin, 254-269.
https://doi.org/10.1007/978-3-642-04174-7_17
[2]  Read, J., Pfahringer, B., Holmes, G. and Frank, E. (2011) Classifier Chains for Multi-Label Classification. Machine. Learning, 85, 333-359.
https://doi.org/10.1007/s10994-011-5256-5
[3]  Pawlak, Z. (2011) Rough Sets. International Journal of Computer and Information Sciences, 11, 34l-356.
https://doi.org/10.1007/BF01001956
[4]  Hu, Q.H., Yu, D.R., Liu, J.F. and Wu, C. (2008) Neighborhood Rough Set Based Heterogeneous Feature Subset Selection. Information Sciences, 178, 3577-3594.
https://doi.org/10.1016/j.ins.2008.05.024
[5]  Li, H., Li, D., Zhai, Y., Wang, S. and Zhang, J. (2016) A Novel At-tribute Reduction Approach for Multi-Label Data Based on Rough Set Theory. Information Sciences, 367-368, 827-847.
https://doi.org/10.1016/j.ins.2016.07.008
[6]  Lin, Y., Li, Y., Wang, C. and Chen, J. (2018) Attribute Reduction for Multi-Label Learning with Fuzzy Rough Set. Knowledge-Based Systems, 152, 51-61.
https://doi.org/10.1016/j.knosys.2018.04.004
[7]  Liu, J., Lin, Y., Li, Y., Weng, W. and Wu, S. (2018) Online Multi-Label Streaming Feature Selection Based on Neighborhood Rough Set. Pattern Recognition, 84, 273-287.
https://doi.org/10.1016/j.patcog.2018.07.021
[8]  Lin, Y., Hua, Q., Liu, J., Chen, J. and Duan, J. (2016) Mul-ti-Label Feature Selection Based on Neighborhood Mutual Information. Applied Soft Computing, 38, 244-256.
https://doi.org/10.1016/j.asoc.2015.10.009
[9]  Lin, Y., Li, Y., Wang, C. and Chen, J. (2018) Attribute Reduction for Multi-Label Learning with Fuzzy Rough Set. Knowledge-Based Systems, 152, 51-61.
https://doi.org/10.1016/j.knosys.2018.04.004
[10]  Fan, X., Chen, Q., Qiao, Z., Wang, C. and Ten, M. (2020) At-tribute Reduction for Multi-Label Classification Based on Labels of Positive Region. Soft Computing, 24, 14039-14049.
https://doi.org/10.1007/s00500-020-04780-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133