全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Graphene  2020 

Hydrogen Adsorption Mechanism of SiC Nanocones

DOI: 10.4236/graphene.2020.91001, PP. 1-12

Keywords: SiCNCs, Density Functional Theory, Hydrogen Storage, Surface Reactivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Due to rapid depletion of fossil energy sources and increasing the environmental pollution through high fossil energy consumption, an alternative renewable and clean energy carrier as hydrogen is requested more investigations in order to get the optimal request by DOE. In this study, a deepest study on SiC nanocones is done including both of the geometrical and electronic properties of all possible five different disclination angles as a function of size using density functional (DFT) calculations at the B3LYP/6-31g level of theory. Then the hydrogen adsorption mechanism is investigated on three different sites: HS1 (above the first neighbor atom of the apex atoms), HS2 (above one atom of the apex atoms) and HS3 (above one atom far from the apex atoms). Our calculations show that the most candidate SiC nanocone structure for hydrogen storage is Si41N49H10-HS2-M1-Type 2 with disclination angle 300˚. In addition, our results indicate that the hydrogen adsorption induced the energy gap to decrease. Hence, these results indicate that the SiCNCs can be considered as a good candidate for hydrogen storage.

References

[1]  El-Barbary, A.A., Kamel, M.A., Eid, K.M., Taha, H.O., Mohamed, R.A. and Al-Khateeb, M.A. (2015) The Surface Reactivity of Pure and Monohydrogenated Nanocones Formed from Graphene Sheets. Graphene, 45, 75-83.
https://doi.org/10.4236/graphene.2015.44008
[2]  El-Barbary, A.A., Kamel, M.A., Eid, K.M., Taha, H.O. and Hassan, M.M. (2015) Mono-Vacancy and B-Doped Defects in Carbon Heterojunction Nanodevices. Graphene, 4, 84-90.
https://doi.org/10.4236/graphene.2015.44009
[3]  El-Barbary, A.A., Eid, K.M., Kamel, M.A., Taha, H.O. and Ismail, G.H. (2015) Adsorption of CO, CO2, NO and NO2 on Boron Nitride Nanotubes: DFT Study. Journal of Surface Engineered Materials and Advanced Technology, 5, 154-161.
https://doi.org/10.4236/jsemat.2015.53017
[4]  El-Barbary, A.A., Eid, K.M., Kamel, M.A., Taha, H.O. and Ismail, G.H. (2015) Adsorption of CO, CO2, NO and NO2 on Carbon Boron Nitride Hetero Junction: DFT Study. Journal of Surface Engineered Materials and Advanced Technology, 5, 169-176.
https://doi.org/10.4236/jsemat.2015.54019
[5]  El-Barbary, A.A., Eid, K.M., Kamel, M.A., Taha, H.O. and Ismail, G.H. (2014) Effect of Tubular Chiralities and Diameters of Single Carbon Nanotubes on Gas Sensing Behavior: A DFT Analysis. Journal of Surface Engineered Materials and Advanced Technology, 4, 66-74.
https://doi.org/10.4236/jsemat.2014.42010
[6]  El-Barbary, A.A., Ismail, G.H. and Babaier, A. (2013) Theoretical Study of Adsorbing CO, CO2, NO and NO2 on Carbon Nanotubes. Journal of Surface Engineered Materials and Advanced Technology, 3, 287-294.
https://doi.org/10.4236/jsemat.2013.34039
[7]  Iijima, S. (1991) Helical Microtubules of Graphitic Carbon. Nature, 354, 56-58.
https://doi.org/10.1038/354056a0
[8]  El-Barbary, A.A., Telling, R.H., Ewels, C.P. and Heggie, M.I. (2003) Structural and Energetics of the Vacancy in Graphite. Physical Review B, 68, Article ID: 144107.
https://doi.org/10.1103/PhysRevB.68.144107
[9]  Ewels, C.P., Telling, R.H., El-Barbary, A.A. and Heggie, M.I. (2003) Metastable Frenkel Pair Defect in Graphite: Source of Winger Energy. Physical Review Letters, 91, Article ID: 025505.
https://doi.org/10.1103/PhysRevLett.91.025505
[10]  Telling, R.H., Ewels, C.P., El-Barbary, A.A. and Heggie, M.I. (2003) Wigner Defects Bridge the Graphite Gap. Nature Materials, 2, 333-337.
https://doi.org/10.1038/nmat876
[11]  Sattler, K. (1995) Scanning Tunneling Microscopy of Carbon Nanotubes and Nanocones. Carbon, 33, 915-920.
https://doi.org/10.1016/0008-6223(95)00020-E
[12]  Garberg, S.N., Naess, G., Helgesen, K.D., Knudsen, G., Kopstad, A. and Elgsaeter, A. (2008) Transmission Electron Microscopeand Electron Diraction Study of Carbon Nanodisks. Carbon, 46, 1535-1543.
https://doi.org/10.1016/j.carbon.2008.06.044
[13]  Harris, G.L. (1995) Properties of Silicon Carbide. INSPEC, the Institution of Electrical Engineers, London.
[14]  Zetterling, C.M. (2002) Process Technology for Silicon Carbide Devices. IET, London.
https://doi.org/10.1049/PBEP002E
[15]  Matsunami, H. (2004) Technological Breakthroughs in Growth Control of Silicon Carbide for High Power Electronic Devices. Japanese Journal of Applied Physics, 43, 6835.
https://doi.org/10.1143/JJAP.43.6835
[16]  Wu, J.J. and Guo, G.Y. (2007) Optical Properties of SiC Nanotubes: An Ab initio Study. Physical Review B, 76, Article ID: 035343.
https://doi.org/10.1103/PhysRevB.76.035343
[17]  Gali, A. (2006) Ab initio Study of Nitrogen and Boron Substitutional Impurities in Single-Wall SiC Nanotubes. Physical Review B, 73, Article ID: 245415.
https://doi.org/10.1103/PhysRevB.73.245415
[18]  Alfieri, G. and Kimoto, T. (2009) The Structural and Electronic Properties of Chiral SiC Nanotubes: A Hybrid Density Functional Study. Nanotechnology, 20, Article ID: 285703.
https://doi.org/10.1088/0957-4484/20/28/285703
[19]  Mavrandonakis, A., Froudakis, G.E., Andriotis, A. and Menon, M. (2006) Silicon Carbide Nanotube Tips: Promising Materials for Atomic Force Microscopy and/or Scanning Tunneling Microscopy. Physical Review Letters, 89, Article ID: 123126.
https://doi.org/10.1063/1.2221418
[20]  Zhu, J., Yu, Z., Burkhard, G.F., Hsu, C.M., Connor, S.T., Xu, Y., Wang, Q., McGehee, M., Fan, S. and Cui, Y. (2009) Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays. Nano Letters, 9, 279-282.
https://doi.org/10.1021/nl802886y
[21]  El-Barbary, A.A. (2019) Hydrogen Storage on Cross Stacking Nanocones. International Journal of Hydrogen Energy, 44, Article ID: 20099.
https://doi.org/10.1016/j.ijhydene.2019.05.043
[22]  El-Barbary, A.A. and Al-Khateeb, M.A. (2018) A Theoretical Study of Hydrogen Adsorption on Surface Nanocone Materials. Current Science International, 7, 370-375.
[23]  EL-Barbary, A.A. (2018) Vacancy Cluster in Graphite: Migration Mechanism and Aggregation. AIP Conference Proceedings, 1976, Article ID: 020006.
https://doi.org/10.1063/1.5042373
[24]  EL-Barbary, A.A. (2017) New Insights into Canted Spiro Carbon Interstitial in Graphite. Applied Surface Science, 426, 238-243.
https://doi.org/10.1016/j.apsusc.2017.07.196
[25]  EL-Barbary, A.A. (2016) Hydrogenated Fullerenes in Space: FT-IR Spectra Analysis. AIP Conference Proceedings, 1742, Article ID: 030005.
https://doi.org/10.1063/1.4953126
[26]  EL-Barbary, A.A. (2016) Hydrogenated Fullerenes Dimer, Peanut and Capsule: An Atomic Comparison. Applied Surface Science, 369, 50-57.
https://doi.org/10.1016/j.apsusc.2016.02.033
[27]  EL-Barbary, A.A. (2016) Potential Energy of H2 inside the C116 Fullerene Dimerization: An Atomic Analysis. Journal of Molecular Structure, 1112, 9-13.
https://doi.org/10.1016/j.molstruc.2016.02.007
[28]  EL-Barbary, A.A. (2016) Hydrogenation Mechanism of Small Fullerene Cages. International Journal of Hydrogen Energy, 41, 375-383.
https://doi.org/10.1016/j.ijhydene.2015.10.102
[29]  EL-Barbary, A.A. (2015) The Surface Reactivity and Electronic Properties of Small Hydrogenation Fullerene Cages. Journal of Surface Engineered Materials and Advanced Technology, 5, 162-168.
https://doi.org/10.4236/jsemat.2015.53018
[30]  EL-Barbary, A.A. (2015) 1H and 13C NMR Chemical Shift Investigations of Hydrogenated Small Fullerene Cages Cn, CnH, CnHn and CnHn+1: n=20, 40, 58, 60. Journal of Molecular Structure, 1097, 76-86.
https://doi.org/10.1016/j.molstruc.2015.05.015
[31]  EL-Barbary, A.A. and Hindi, A.A. (2015) Hydrogen Storage on Halogenated C40 Cage: An Intermediate between Physisorption and Chemisorptions. Journal of Molecular Structure, 1080, 169-175.
https://doi.org/10.1016/j.molstruc.2014.09.034
[32]  El-Barbary, A.A., Eid, K.M., Al-Khateeb, M.A. and Kamel, M.A. (2010) The Role of Irradiation in Graphite for Hydrogen Storage. Arab Journal of Nuclear Sciences and Applications.
https://inis.iaea.org/collection/NCLCollectionStore/_Public/42/076/42076631.pdf?r=1
https://inis.iaea.org/search/search.aspx?search-option=everywhere&orig_q=
The%20role%20of%20irradiation%20in%20graphite%20for%20hydrogen%20storage
[33]  El-Barbary, A.A., Lebda, H.I. and Kamel, M.A. (2009) The High Conductivity of Defect Fullerene C40 Cage. Computational Materials Science, 46, 128-132.
https://doi.org/10.1016/j.commatsci.2009.02.034
[34]  Berry, G.D. and Aceves, S.M. (1998) Onboard Storage Alternatives for Hydrogen Vehicles. Energy Fuels, 12, 49-55.
https://doi.org/10.1021/ef9700947
[35]  Chen, P., Wu, X., Lin, J. and Tan, K.L. (1999) High H2 Uptake by Alkali-Doped Carbon Nano Tubes under Ambient Pressure and Moderate Temperatures. Science, 285, 91-93.
[36]  Liu, C. and Cheng, H.M. (2005) Carbon Nanotubes for Clean Energy Applications. Journal of Physics D: Applied Physics, 38, 231-252.
https://doi.org/10.1088/0022-3727/38/14/R01
[37]  Strobel, R., Garche, J., Moseley, P.T., Jorissen, L. and Wolf, G. (2006) Hydrogen Storage by Carbon Materials. Journal of Power Sources, 159, 781-801.
https://doi.org/10.1016/j.jpowsour.2006.03.047
[38]  Baughman, R.H., Zakhidov, A.A. and De Heer, W.A. (2002) Carbon Nanotubes—The Route toward Applications. Science, 297, 787-792.
https://doi.org/10.1126/science.1060928
[39]  Yang, F.H. and Yang, R.T. (2002) Adsorption Behaviors of HiPco Single-Walled Carbon Nanotube Aggregates for Alcohol Vapors. The Journal of Physical Chemistry, 106, 8994-8999.
[40]  Zhao, Y., Kim, Y.H., Dillon, A.C., Heben, M.J. and Zhang, S.B. (2005) Ab initio Design of Ca-Decorated Organic Frameworks for High Capacity Molecular Hydrogen Storage with Enhanced Binding. Physical Review Letters, 95, Article ID: 155504.
https://doi.org/10.1103/PhysRevLett.94.155504
[41]  Yang, F.H., Lachawiec, A.J. and Yang, R.T. (2006) Hydrogen Sorption on Palladium-Doped Sepiolite-Derived Carbon Nanofibers. The Journal of Physical Chemistry B, 110, 6236-6244.
https://doi.org/10.1021/jp056461u
[42]  Becke, A.D. (1993) Density-Functional Thermochemistry. III. The Role of Exact Exchange. Chemical Physics, 98, 5648.
https://doi.org/10.1063/1.464913
[43]  Vosko, S.H., Wilk, L., Nusair, M. and Can, J. (1980) Influence of an Improved Local-Spin-Density Correlation-Energy Functional on the Cohesive Energy of Alkali Metals. Physical Review B, 22, 3812-3815.
https://doi.org/10.1103/PhysRevB.22.3812
[44]  Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Lamham, M., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B.G., Chen, W., Wong, M.W., Andres, J.L., Head-Gordon, M., Replogle, E.S. and Pople, J.A. (2004) Gaussian 2004. Gaussian Inc., Wallingford.
[45]  Frisch, A., Dennington, R.D., Keith, T.A., Millam, J., Nielsen, A.B., Holder, A.J. and Hiscocks, J. (2003) Gauss View Manual Version 4. Gaussian Inc.
[46]  El-Nahass, M.M., Kamel, M.A., El-Barbary, A.A., El-Mansy, M.A.M. and Ibrahim, M. (2013) On the Spectroscopic Analyses of Thioindigo Dye. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 113, 332-336.
[47]  Kotz, J.C., Treichel, P. and Weaver, G.C. (2006) Chemistry and Chemical Reactivity. Thomson Brooks Cole, Pacific Grove.
[48]  Nikitin, A., Li, X.L., Zhang, Z.Y., Ogasawara, H., Dai, H.J. and Nilsson, A. (2008) Hydrogen Storage in Carbon Nanotubes through the Formation of Stable C-H Bonds. Nano Letters, 8, 162-167.
https://doi.org/10.1021/nl072325k

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133