|
含铁材料稳定化处理砷污染土壤的研究进展
|
Abstract:
综述了土壤中砷的存在形态及其迁移转化,探讨了不同含铁材料对砷的稳定化效果,分析了含铁材料稳定化处理砷污染土壤的主要影响因素。
The chemical speciation and behavior of arsenic in soil were summarized in this paper. The stabi-lization effect of arsenic by different iron-containing materials was also discussed. The main in-fluence factors of stabilization treatment of arsenic by iron-containing materials were analyzed.
[1] | 陈怀满. 环境土壤学[M]. 第2版. 北京: 科学出版社, 2010. |
[2] | 郝汉舟, 陈同斌, 靳孟贵, 等. 重金属污染土壤稳定/固化修复技术研究进展[J]. 应用生态学报, 2011, 22(3): 816-824. |
[3] | Vir, E.N. and St, E.D. (2002) Arsenic Treatment Technologies for Soil, Waste, and Water. |
[4] | 胡立琼, 曾敏, 雷鸣, 等. 含铁材料对污染水稻土中砷的稳定化效果[J]. 环境工程学报, 2014(4): 1599-1604. |
[5] | 王春旭, 李生志, 许荣玉. 环境中砷的存在形态研究[J]. 环境科学, 1993(4): 53-57. |
[6] | Alam, M.G., Tokunaga, S. and Maekawa, T. (2001) Extraction of Arsenic in a Syn-thetic Arsenic-Contaminated Soil Using Phosphate. Chemosphere, 43, 1035. https://doi.org/10.1016/S0045-6535(00)00205-8 |
[7] | Pongratz, R. (1998) Arsenic Speciation in Environmental Samples of Contaminated Soil. Science of the Total Environment, 224, 133-141. https://doi.org/10.1016/S0048-9697(98)00321-0 |
[8] | Ma, L.Q., Komar, K.M., Tu, C., et al. (2001) A Fern That Hyperaccumulates Arsenic. World Environment, 409, 579. https://doi.org/10.1038/35054664 |
[9] | Challenger, F. (1947) Biological Methylation. Advances in Enzymology and Related Subjects of Biochemistry, 35, 396-416. |
[10] | Moore, T.J., Rightmire, C.M. and Vempati, R.K. (2000) Ferrous Iron Treatment of Soils Contaminated with Arsenic-Containing Wood-Preserving Solution. Journal of Soil Con-tamination, 9, 375-405. https://doi.org/10.1080/10588330091134310 |
[11] | Hartley, W., Edwards, R. and Lepp, N.W. (2004) Arsenic and Heavy Metal Mobility in Iron Oxide-Amended Contaminated Soils as Evaluated by Short- and Long-Term Leaching Tests. Environmental Pollution, 131, 495-504. https://doi.org/10.1016/j.envpol.2004.02.017 |
[12] | Warren, G.P. and Alloway, B.J. (2003) Reduction of Arsenic Uptake by Lettuce with Ferrous Sulfate Applied to Contaminated Soil. Journal of Environmental Quality, 32, 767-772. https://doi.org/10.2134/jeq2003.7670 |
[13] | Cornell, R.M. (2004) The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. Second Edition. https://doi.org/10.1002/3527602097 |
[14] | Langmuir, D. (1996) Aqueous Environmental Geochemis-try. |
[15] | Cornell, R.M., Schwertmann, U., Cornell, R., et al. (1997) The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. Mineralogical Magazine, 61, 740-741. |
[16] | Waychunas, G.A., Rea, B.A., Fuller, C.C., et al. (1993) Surface Chemistry of Ferrihydrite: Part 1. EXAFS Studies of the Geometry of Coprecipitated and Adsorbed Arsenate. Geochimica et Cosmochimica Acta, 57, 2251-2269. https://doi.org/10.1016/0016-7037(93)90567-G |
[17] | 陈雯, 刘玲, 周建伟. 三种氧化铁吸附水环境中砷的试验研究[J]. 环境科学与技术, 2009(1): 63-67. |
[18] | Xiao, H. and Harvey, E. (1998) Adsorption and Oxidation of Arsenite on Goethite. Soil Science, 163, 278-287. https://doi.org/10.1097/00010694-199804000-00003 |
[19] | Morin, G. and Calas, G. (2006) Arsenic in Soils, Mine Tailings, and Former Industrial Sites. Elements, 2, 97-101. https://doi.org/10.2113/gselements.2.2.97 |
[20] | Pierce, M.L. and Moore, C.B. (1982) Adsorption of Arsenite and Arsenate on Amorphous Iron Hydroxide. Water Research, 16, 1247-1253. https://doi.org/10.1016/0043-1354(82)90143-9 |
[21] | Masscheleyn, P.H., Delaune, R.D. and Jr., W.H.P. (1991) Effect of Redox Potential and pH on Arsenic Speciation and Solubility in a Contaminated Soil. Environmental Science & Technology, 25, 1414-1419. https://doi.org/10.1021/es00020a008 |
[22] | Carbonell-Barrachina, A.A., Jugsujinda, A., Burlo, F., et al. (2000) Arsenic Chemistry in Municipal Sewage Sludge as Affected by Redox Potential and pH. Water Research, 34, 216-224. https://doi.org/10.1016/S0043-1354(99)00127-X |
[23] | Smith, E., Naidu, R. and Altson, A.M. (1998) Arsenic in the Soil Environment: A Review. Advances in Agronomy, 64, 149-195. https://doi.org/10.1016/S0065-2113(08)60504-0 |
[24] | Goh, K. and Lim, T. (2005) Arsenic Fractionation in a Fine Soil Fraction and Influence of Various Anions on Its Mobility in the Subsurface Environment. Applied Geochemistry, 20, 229-239. https://doi.org/10.1016/j.apgeochem.2004.08.004 |
[25] | Smith, E., Naidu, R. and Alston, A.M. (2002) Chemistry of Inorganic Arsenic in Soils: II. Effect of Phosphorus, Sodium, and Calcium on Arsenic Sorption. Journal of Envi-ronmental Quality, 31, 557. https://doi.org/10.2134/jeq2002.0557 |
[26] | Frau, F., Biddau, R. and Fanfani, L. (2008) Effect of Major Anions on Arsenate Desorption from Ferrihydrite-Bearing Natural Samples. Applied Geochemistry, 23, 1451-1466. https://doi.org/10.1016/j.apgeochem.2008.01.006 |
[27] | Wang, X., Peng, B., Tan, C., et al. (2015) Recent Advances in Arsenic Bioavailability, Transport, and Speciation in Rice. Environmental Science & Pollution Research International, 22, 5742-5750. https://doi.org/10.1007/s11356-014-4065-3 |
[28] | Grasso, D., Chin, Y.P. and Jr., W.J.W. (1990) Structural and Behavioral Characteristics of a Commercial Humic Acid and Natural Dissolved Aquatic Organic Matter. Chemosphere, 21, 1181-1197. https://doi.org/10.1016/0045-6535(90)90139-K |
[29] | Redman, A.D., Macalady, D.L. and Ahmann, D. (2002) Natural Organic Matter Affects Arsenic Speciation and Sorption onto Hematite. Environmental Science & Technology, 36, 2889-2896. https://doi.org/10.1021/es0112801 |
[30] | Buschmann, J., Kappeler, A., Lindauer, U., et al. (2015) Arsenite and Arsenate Binding to Dissolved Humic Acids: Influence of pH, Type of Humic Acid, and Aluminum. Humic Acids, 40, 6015-6020. https://doi.org/10.1021/es061057+ |
[31] | Cornell, R.M. (1979) Influence of Organic Anions on the Crystallization of Ferrihydrite. Clays & Clay Minerals, 27, 402-410. https://doi.org/10.1346/CCMN.1979.0270602 |
[32] | 陈薇. 腐殖酸对β-羟基氧化铁吸附砷的影响研究[D]: [硕士学位论文]. 上海: 华东师范大学, 2015. |