|
支持向量机分类理论中的几个细节理解及实验
|
Abstract:
目前的大数据时代,机器学习作为数据处理的关键技术,不可缺少。各个高校在很多专业都在开展机器学习这门课程,其中的支持向量机算法作为重要内容之一,广受学生青睐。但在教学过程中,我们发现其理论在某些方面比较晦涩难懂,本文在简要概述完支持向量机分类的理论后,总结了几个关键细节的理解,比如:支持向量机线性分类器模型中的最大化Margin的理解;线性分类器模型中目标函数和约束条件的推导过程中某些知识点的理解;线性分类器模型求解过程中,为什么拉格朗日乘子大于0对应的数据点就是支持向量?支持向量机的分类面唯一吗?最后,给出了Matlab、R语言、python等几种软件在iris数据上的实验代码及实验中得到的支持向量机模型的获取方法。这些细节的理解及软件实验,对支持向量机模型都进行了透彻的剖析和融会贯通,有助于支持向量机分类学习中的初步探索和深入的研究,给广大支持向量机的学习者和使用者提供了重要的参考。
In the era of big data, machine learning is indispensable for data processing. Various colleges and universities are carrying out the course of machine learning in many majors. As one of the im-portant contents, support vector machine algorithm is widely favored by students. But in the pro-cess of teaching, we find that its theory is rather obscure in some aspects. After summarizing the theory of support vector machine classification, this paper summarizes several key points’ under-standing, such as, the understanding of maximizing margin in support vector machine linear classi-fier model; the understanding of some knowledge points in the derivation of objective functions and constraints in linear classifier model; in the process of solving linear classifier model, why is the da-ta point corresponding to Lagrange multiplier greater than 0 support vector? Is the support vector machine classification face unique? Then, the experimental codes of several softwares such as MATLAB, R language and python on iris data and the understanding of relevant results are ex-pounded. The understanding of these details and the software experiment have carried on the thorough analysis and the fusion to the support vector machine model, which is helpful for the pre-liminary exploration and in-depth study of SVM classification learning, having provided the im-portant reference for the broad support vector machine learner and the user.
[1] | Hastie, T., Tibshirani, R. and Friedman, J. (2009) The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd Edition, Springer, Berlin. |
[2] | 李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012. |
[3] | 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. |
[4] | Brett Lantz. 机器学习与R语言[M]. 李洪成, 许金炜, 李舰, 译. 北京: 机械工业出版社, 2015. |
[5] | 支持向量机通俗导论(理解SVM的三层境界) [Z/OL].
https://blog.csdn.net/macyang/article/details/38782399/, 2014-08-23. |
[6] | Chang, C.-C. and Lin, C.-J. (2011) LIBSVM: A Library for Support Vector Machines. ACM Transactions on Intelligent Systems and Technology, 2, Article No. 27. https://doi.org/10.1145/1961189.1961199 |
[7] | 李洋. Matlab技术论坛[Z/OL]. http://www.matlabsky.com |
[8] | Vapnik, V. (1998) Statistical Learning Theory. John Wiley & Sons Inc., New York. |
[9] | Zhang, X.D., Li, A. and Pan, R. (2016) Stock Trend Prediction Based on a New Status Box Method and Ada Boost Probabilistic Support Vector Ma-chine. Applied Soft Computing, 49, 385-398.
https://doi.org/10.1016/j.asoc.2016.08.026 |
[10] | Goudjil, M., Koudil, M., Bedda, M., et al. (2018) A Novel Active Learning Method Using SVM for Text Classification. International Journal of Automation and Computing, 4, 1-9. https://doi.org/10.1007/s11633-015-0912-z |
[11] | Wang, Y. and Duan, H. (2018) Classification of Hyperspectral Images by SVM Using a Composite Kernel by Employing Spectral, Spatial and Hierarchical Structure Information. Re-mote Sensing, 10, 26.
https://doi.org/10.3390/rs11010026 |
[12] | Singh, G. and Chhabra, I. (2018) Effective and Fast Face Recognition System Using Complementary OC-LBP and HOG Feature Descriptors with SVM Classifier. Journal of Information Technology Research, 11, 91-110.
https://doi.org/10.4018/JITR.2018010106 |
[13] | Huang, S., Cai, N., Pacheco, P.P., et al. (2018) Applications of Support Vector Machine (SVM) Learning in Cancer Genomics. Cancer Genomics Proteomics, 15, 41-51. https://doi.org/10.21873/cgp.20063 |
[14] | 王小川, 史峰, 郁磊, 李洋. MATLAB神经网络43个案例分析[M]. 北京: 北京航空航天大学出版社, 2013. |