全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于陆基L波段辐射计的青藏高原地表冻融反演研究
Based on a Relative Frost Factor Algorithm Retrieving Landscape Freeze/Thaw State by Ground-Based L-Band Radiometer

DOI: 10.12677/AG.2020.105039, PP. 437-446

Keywords: 青藏高原,冻融,L波段,陆基辐射计,极化指数
Tibetan Grassland
, Freeze/Thaw, L-Band, Ground-Based, Polarization Index

Full-Text   Cite this paper   Add to My Lib

Abstract:

青藏高原作为中低纬度地区面积最大的季节性冻土分布区,其地表冻融在气候变化及反馈中扮演了关键性角色。L波段被动微波辐射计观测作为最具潜力的全球尺度冻融反演技术还未被评估其在青藏高原的适用性,因此,本文基于高频时次的陆基辐射计观测配合详尽的站点土壤监测,尝试以相对冻结因子阈值判断算法为基础算法,并详细探讨了应用多种微波极化指数在青藏高原典型季节性冻土区的适用性。结果表明:针对青藏高原季节性冻土,最适采用垂直极化指数作为相对冻结因子阈值判断算法的输入指数,其总精度能够在60?入射观测角度时达到0.92,而极化差异指数NPR作为最广泛应用的判别指数,并不适合青藏高原地区。本研究为青藏高原地区开展L波段星载微波辐射计反演土壤冻融提供了客观的极化指数选取依据。
Soil freezing dramatically alters the soil hydraulic and thermal properties that in turn affect surface energy and water budgets, net ecosystem exchange of carbon and the surface runoff over grassland. Passive microwave observations at L-band (1 - 2 GHz) benefits from a relatively high contrast in the dielectric constant between free water and ice with lower scattering by surface vegetation. Thus, this study uses a relative frost fac-tor algorithm with four polarization ratios to detect temporal changes of soil freeze/thaw (F/T) state based on a soil temperature and freeze/thaw synthesis experiments conducted over the north-eastern part of the Tibetan Plateau. The L-band brightness temperature and the in-situ soil temperature are measured simultaneously for the purpose of evaluating performances of the relative frost factor algorithm on different incident angles. Results of estimated soil F/T state indicate that the algorithm corresponding to Vertical Polarization index (Vpol) achieves the highest preci-sion (0.92) with incident angle of 60?. NPR index, as wide and successful applications for frost factor algorithm, is still needed to be optimized to decrease its degree of confusion in discriminating F/T state. The evaluation of the performances in this study is useful for selecting optimum polarization index for spaceborne L-band radiometers retrieving soil freeze/thaw state in the seasonally frozen Tibetan grassland.

References

[1]  Zhang, T., Barry, R.G., Knowles, K., Heginbottom, J.A. and Brown, J. (1999) Statistics and Characteristics of Perma-frost and Ground-Ice Distribution in the Northern Hemisphere. Polar Geography, 23, 132-154.
https://doi.org/10.1080/10889379909377670
[2]  周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000.
[3]  金会军, 李述训, 王绍令, 等. 气候变化对中国多年冻土和寒区环境的影响[J]. 地理学报, 2000, 55(2): 161-173.
[4]  Viterbo, P., Beljaars, A., Mahfouf, J.F. and Teixeira, J. (1999) The Representation of Soil Mois-ture Freezing and Its Impact on the Stable Boundary Layer. Quarterly Journal of the Royal Meteorological Society, 125, 2401-2426.
https://doi.org/10.1002/qj.49712555904
[5]  Schaefer, K., Zhang, T., Bruhwiler, L., et al. (2011) Amount and Timing of Permafrost Carbon Release in Response to Climate Warming. Tellus, 63, 165-180.
https://doi.org/10.1111/j.1600-0889.2011.00527.x
[6]  王澄海, 靳双龙, 施红霞. 未来50a中国地区冻土面积分布变化[J]. 冰川冻土, 2014, 36(1): 1-8.
[7]  Jackson, R.B., Jobbágy, E.G., Avissar, R., et al. (2005) Trading Water for Carbon with Biological Carbon Sequestration. Science, 310, 1944-1947.
https://doi.org/10.1126/science.1119282
[8]  张立新, 蒋玲梅, 柴琳娜. 地表冻融过程被动微波遥感机理研究进展[J]. 地球科学进展, 2011, 26(10): 1023-1029.
[9]  Yang, K., Qin, J., Zhao, L., et al. (2013) A Multiscale Soil Moisture and Freeze-Thaw Monitoring Network on the Third Pole. Bulletin of the American Meteorological Society, 94, 1907-1916.
https://doi.org/10.1175/BAMS-D-12-00203.1
[10]  阳坤, 陈莹莹, 秦军. 基于微波数据同化的中国区域土壤水分产品[C]//第一届中国大地测量和地球物理学学术大会论文集. 中国大地测量和地球物理学学术大会, 2014.
[11]  李新, 黄春林, 车涛, 等. 中国陆面数据同化系统研究的进展与前瞻[J]. 自然科学进展, 2007, 17(2): 163-173.
[12]  Owe, M., Van, A.A. and Griend, D.G. (2001) On the Relationship between Thermodynamic Surface Temperature and High-Frequency (37GHz) Vertically Polarized Brightness Temperature under Semi-Arid Conditions. International Journal of Remote Sensing, 22, 3521-3532.
https://doi.org/10.1080/01431160110063788
[13]  金亚秋. 星载微波SSM/I遥感在中国东北华北农田的辐射特征分析[J]. 遥感学报, 1998, 2(1): 19-25.
[14]  Roy, A., Toose, P., Williamson, M., et al. (2017) Response of L-Band Brightness Temperatures to Freeze/Thaw and Snow Dy-namics in a Prairie Environment from Ground-Based Radiometer Measurements. Remote Sensing of Environment, 191, 67-80.
https://doi.org/10.1016/j.rse.2017.01.017
[15]  Rautiainen, K., Lemmetyinen, J., Schwank, M., et al. (2014) Detection of Soil Freezing from L-Band Passive Microwave Observations. Remote Sensing of Environment, 147, 206-218.
https://doi.org/10.1016/j.rse.2014.03.007
[16]  Schwank, M., Stahli, M., Wydler, H., et al. (2004) Mi-crowave L-Band Emission of Freezing Soil. IEEE Transactions on Geoscience and Remote Sensing, 42, 1252-1261.
https://doi.org/10.1109/TGRS.2004.825592
[17]  Harrysson Drotz, S., Tilston, E.L., Sparrman, T., Schleucher, J., Nilsson, M. and ?quist, M.G. (2009) Contributions of Matric and Osmotic Potentials to the Unfrozen Water Content of Frozen Soils. Geoderma, 148, 392-398.
https://doi.org/10.1016/j.geoderma.2008.11.007
[18]  王作亮, 文军, 刘蓉, 等. 基于地基微波辐射计数据评估不同土壤介电模型反演土壤湿度的适用性[J]. 遥感技术与应用, 2020, 35(1): 97-110.
[19]  Matzler, C., Weber, D., Wuthrich, M., et al. (2003) ELBARA, the ETH L-Band Radiometer for Soil-Moisture Research. Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium, 5, 3058-3060.
[20]  Escorihuela, M.J., Chanzy, A., Wigneron, J.P. and Kerr, Y.H. (2010) Effective Soil Moisture Sampling Depth of L-Band Radiometry: A Case Study. Remote Sensing of Environment, 114, 995-1001.
https://doi.org/10.1016/j.rse.2009.12.011
[21]  Rautiainen, K., Lemmetyinen, J., Pulliainen, J., Vehvilainen, J., Drusch, M., Kontu, A., Kainulainen, J. and Seppanen, J. (2012) L-Band Radiometer Observations of Soil Processes in Boreal and Subarctic Environments. IEEE Transactions on Geoscience and Remote Sensing, 50, 1483-1497.
https://doi.org/10.1109/TGRS.2011.2167755

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133