全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

北京市颗粒物污染特征及其大气环流成因分析
Analysis on the Characteristics of Atmospheric Particulate Matter and Its Causes of Atmospheric Circulation in Beijing

DOI: 10.12677/AG.2020.105038, PP. 425-436

Keywords: 北京市,不同时间尺度,污染天气过程,环流成因
Beijing
, Different Time Scales, Polluting Weather Process, Causes of Circulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文利用北京市大气污染物逐时观测数据、气象观测资料、NCEP/NCAR再分析资料,系统分析了2015年~2017年北京市大气污染概况,总结了不同时间尺度颗粒物浓度变化特征,结果表明北京市空气污染综合指数下降,空气污染状况好转,颗粒物和氮氧化物日均浓度超标天数逐年减少,但PM2.5超标倍数最高达6.7倍,年均超标率达32%,颗粒物污染问题仍然值得重视。选择伴随冬季冷空气过程发生的7例细颗粒物污染事件分析其大气环流成因,发现污染天气过程中,稳定的大气环境、高湿天气条件、较差的水平垂直扩散条件和外部污染物输送共同作用导致了北京市污染天气的发生;之后,高空阻塞形势崩溃,横槽转竖,引导冷空气南下,西北清洁气流与地面蒙古高压系统相互配合,易在北京地区造成剧烈大风天气,打破逆温层,增强颗粒物扩散能力,同时冷空气南下形成的降水天气会进一步清除颗粒物,污染天气消退。
In this paper, hourly observation data of air pollutants in Beijing, meteorological observation data and NCEP/NCAR reanalysis data were used to systematically analyze the air pollution situation, to summarize the variation characteristics of particulate matter concentration in different time scales in Beijing from 2015 to 2017. It was found that air pollution index of Beijing dropped, the air pollution situation improved, and the average daily concentrations of particulate matter and nitrogen oxide decreased year by year. However, the highest daily concentration of PM2.5 was 6.7 times higher than that of the grade II limits by China. The aver-age number of days for the daily concentration of PM2.5 exceeding the grade II limits by China reached 32% of the total in the whole year. The problem of particulate matter pollution still deserved attention. 7 cases of fine particle pollution in winter during the whole cold surge process were selected to analyze its causes of atmospheric circulation. It was found that the combination of stable atmospheric environment, high humidity, poor horizontal and vertical dispersion conditions and external pollutant transport resulted in the occurrence of polluted weather in Beijing. After that, the upper-air blocking situation collapsed, the horizontal trough turned vertical, leading the cold air southward. The northwest clean air flow cooperated with the surface Mongolian high pressure system, which easily caused severe gale weather in the Beijing area, broke the inversion layer, and enhanced the particle diffusion ability. At the same time, the cold air southward will form precipitation weather and further remove the particles. The pollution weather ended.

References

[1]  Kashima, S., Yorifuji, T., Tsuda, T., et al. (2018) Effects of Traffic-Related Outdoor Air Pollution on Respiratory Illness and Mortality in Children, Taking into Account Indoor air Pollution, in Indonesia. Journal of Occupational and Envi-ronmental Medicine, 52, 340-345.
https://doi.org/10.1097/JOM.0b013e3181d44e3f
[2]  马志强, 赵秀娟, 孟伟, 等. 雾和霾对北京地区大气能见度影响对比分析[J]. 环境科学研究, 2012, 25(11): 1208-1214.
[3]  苏健婷, 杜婧, 王春梅, 等. 大气污染物对北京市常住居民死亡影响的时间序列研究[J]. 环境与健康杂志, 2018, 35(5): 421-424.
[4]  Harding, R. and Maritz, G. (2012) Maternal and Fetal Origins of Lung Disease in Adulthood. Seminars in Fetal and Neonatal Medicine, 17, 67-72.
https://doi.org/10.1016/j.siny.2012.01.005
[5]  Xiao, Q.Y., Liu, Y., Mulholland, J.A., et al. (2016) Pediatric Emergency Department Visits and Ambient Air Pollution in the U.S. State of Georgia: A Case-Crossover Study. Environmental Health, 15, Article No. 115.
https://doi.org/10.1186/s12940-016-0196-y
[6]  Yorifuji, T., Kashima, S. and Doi, H. (2016) Associations of Acute Exposure to Fine and Coarse Particulate Matter and Mortality among Older People in Tokyo, Japan. Science of the Total Environment, 542, 354-359.
https://doi.org/10.1016/j.scitotenv.2015.10.113
[7]  Arden, C.P. and Douglas, W. (2006) Health Effects of Fine Particulate Air Pollution: Lines That Connect. Journal of the Air & Waste Management Association, 56, 709-742.
https://doi.org/10.1080/10473289.2006.10464485
[8]  王跃思, 姚丽, 刘子锐, 等. 京津冀大气霾污染及控制策略思考[J]. 中国科学院院刊, 2013, 28(3): 353-363.
[9]  李婷婷, 尉鹏, 程水源, 等. 2005-2014年中三角城市群大气污染特征及变化趋势[J]. 环境工程学报, 2017, 11(5): 2977-2984.
[10]  Flocas, H., Kelessis, A., Helmis, C., et al. (2009) Synoptic and Local Scale Atmospheric Circulation Associated with Air Pollution Episodes in an Urban Medi-terranean Area. Theoretical and Applied Climatology, 95, 265-277.
https://doi.org/10.1007/s00704-008-0005-9
[11]  任阵海, 苏福庆, 高庆先, 等. 边界层内大气排放物形成重污染背景解析[J]. 大气科学, 2005, 29(1): 57-63.
[12]  朱佳雷, 王体健, 邢莉, 等. 江苏省的一次大面积重霾污染天气的特征和成因[J]. 中国环境科学, 2011, 31(12): 1943-1950.
[13]  戴竹君, 刘端阳, 王宏斌, 等. 江苏秋冬季重度霾的分型研究[J]. 气象学报, 2016, 7(1): 133-148.
[14]  吴兑, 廖雪莲, 邓雪娇, 等. 珠江三角洲霾天气的近地层输送条件研究[J]. 应用气象学报, 2008, 19(1): 1-9.
[15]  赵普生, 徐晓峰, 孟伟, 等. 京津冀区域霾天气特征[J]. 中国环境科学, 2012, 32(1): 31-36.
[16]  张岳鹏, 李璇, 聂滕, 等. 2014年2月北京PM2.5污染过程及天气形势分析[J]. 气象与环境科学, 2016, 39(2): 55-62.
[17]  刘郁珏, 李艳, 苗世光. 北京市房山区大气污染物时空分布特征及气象影响因素分析[J]. 气象与环境学, 2018, 41(4): 60-69.
[18]  刘欣艳, 任仁. 北京市大气污染的特点及成因[J]. 城市与减灾, 2003, 6(1): 41-43.
[19]  苏福庆, 高庆先, 张志刚, 等. 北京边界层外来污染物输送通道[J]. 环境科学研究, 2004, 17(1): 26-29.
[20]  廖晓农, 张小玲, 王迎春, 等. 北京地区冬夏季持续性雾–霾发生的环境气象条件对比分析[J]. 环境科学, 2014, 35(6): 2031-2044.
[21]  杨旭, 张小玲, 康延臻, 等. 京津冀地区冬半年空气污染天气分型研究[J]. 中国环境科学, 2017, 37(9): 3201-3209.
[22]  张恒德, 张碧辉, 吕梦瑶, 等. 北京地区静稳天气综合指数的初步构建及其在环境气象中的应用[J]. 气象, 2017, 43(8): 998-1004.
[23]  胡敏, 刘尚, 吴志军, 等. 北京夏季高温高湿和降水过程对大气颗粒物谱分布的影响[J]. 环境科学, 2006, 27(11): 2293-2298.
[24]  环境保护部, 国家质量监督检验检疫总局. GB3095-2012环境空气质量标准[S]. 北京: 中国环境科学出版社, 2012.
[25]  魏巍, 张稳定, 陈焕盛, 等. 库布齐沙漠治理对京津冀地区空气质量影响: 2017年5月3-6日沙尘天气模拟[J]. 中国沙漠, 2020, 40(1): 1-11.
[26]  孟燕军, 程丛兰. 影响北京大气污染物变化的地面天气形势分析[J]. 气象, 2002(4): 42-47.
[27]  吕梦瑶, 张恒德, 王继康, 等. 2015年冬季京津冀两次重污染天气过程气象成因[J]. 中国环境科学, 2019, 39(7): 2748-2757.
[28]  马小会, 廖晓农, 唐宜西, 等. 北京地区重空气污染天气分型及个例分析[J]. 气象与环境学报, 2017, 33(5): 53-60.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133