全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Smart Grid  2020 

智能微网建模及稳定性分析综述
Microgrid Modeling and Stability Analysis: A Review

DOI: 10.12677/SG.2020.103009, PP. 74-89

Keywords: 智能微网,建模方法,控制策略,稳定性分析
Microgrid
, Modeling Method, Control Strategy, Stability Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

智能微网是分布式能源应用技术的重要支撑,有效地完善了大电网体系架构。本文首先对智能微网的最新发展和结构做了简要回顾。分析智能微网的经典拓扑结构示意图,并对其系统构成及运行特性进行了总结与分析。同时归纳和讨论了智能微网的建模方法、控制策略及稳定性分析。最后讨论了智能微网系统目前在建模上存在的一些问题,对智能微网系统的未来发展进行了展望,为智能微网的应用推广提供了理论依据。
Microgrid is an important support of distributed energy application technology, and effectively perfects the structure of large power grid. This paper first makes a brief review of the latest development and structure of the smart micogrid. The classic topology diagram of the smart micogrid is analyzed, and the system composition and operating characteristics are summarized and analyzed. Meanwhile, the modeling method, control strategy and stability analysis of microgrid are summarized and discussed. Finally, some problems existing in the modeling of micogrid system are discussed, and the future development of micogrid system is forecasted, which provides a theoretical basis for the application and popularization of micogrid.

References

[1]  Irfan, M., Iqbal, J., Iqbal, A., et al. (2017) Opportunities and Challenges in Control of Smart Grids-Pakistani Perspective. Renewable and Sustainable Energy Reviews, 71, 652-674.
https://doi.org/10.1016/j.rser.2016.12.095
[2]  Shahidehpour, M. (2010) Role of Smart Microgrid in a Perfect Power System. EEE PES General Meeting, Providence, RI, 25-29 July 2010.
https://doi.org/10.1109/PES.2010.5590068
[3]  McIntyre, K.C., Clancey-Rivera, C., Tobin, M.C., et al. (2010) The Feasibility of an Environmentally Friendly Microgrid. North American Power Symposium 2010, 26-28 September 2010, Arlington, TX, 1-6.
https://doi.org/10.1109/NAPS.2010.5619973
[4]  李晶, 许洪华, 赵海翔, 等. 并网光伏电站动态建模及仿真分析[J]. 电力系统自动化, 2008, 32(24): 83-87.
[5]  Verma, V., Solanki, S.K. and Solanki, J. (2017) State Space Modeling of Three-Phase Transformers for Small-Signal Analysis of a Microgrid. 2017 North American Power Symposium (NAPS), 17-19 September 2017, Morgantown, WV, 1-4.
https://doi.org/10.1109/NAPS.2017.8107337
[6]  黄国维, 邓伟锋, 朱智成 风光储微电网系统建模仿真[J]. 自动化与仪表, 2018, 33(9): 85-91.
[7]  Naderi, M., Khayat, Y., Shafiee, Q. and Bevrani, H. (2018) Modeling of Islanded Microgrids Using Static and Dynamic Equivalent Thevenin Circuits. 2018 20th European Conference on Power Electronics and Applications (EPE’18 ECCE Europe), Riga, 13-15 February 2018, 1-10.
https://doi.org/10.1109/PEDSTC.2018.8343849
[8]  Valdivia, V., Diaz, D., Gonzalez-Espin, F., et al. (2014) Systematic Small Signal Modeling and Stability Analysis of a Microgrid. 2014 IEEE 5th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Galway, 24-27 June 2014, 1-5.
https://doi.org/10.1109/PEDG.2014.6878648
[9]  Moussa, H., Martin, J., Pierfederici, S., et al. (2017) Modeling and Large Signal Stability Analysis for Islanded AC-Microgrids. 2017 IEEE Industry Applications Society Annual Meeting, Cincinnati, OH, 1-5 October 2017, 1-6.
https://doi.org/10.1109/IAS.2017.8101758
[10]  Pogaku, N., Prodanovic, M. and Green, T.C. (2007) Modeling, Analysis and Testing of Autonomous Operation of an Inverter-Based Microgrid. IEEE Transactions on Power Electronics, 22, 613-625.
https://doi.org/10.1109/TPEL.2006.890003
[11]  Katiraei, F., Iravani, M.R. and Lehn, P.W. (2007) Small-Signal Dynamic Model of a Micro-Grid Including Conventional and Electronically Interfaced Distributed Resources. IET Generation, Transmission & Distribution, 1, 369-378.
https://doi.org/10.1049/iet-gtd:20045207
[12]  Guarderas, G., Francés, A., Asensi, R., et al. (2017) Large-Signal Black-Box Behavioral Modeling of Grid-Supporting Power Converters in AC Microgrids. 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, 153-158.
https://doi.org/10.1109/ICRERA.2017.8191258
[13]  Liu, H., Cai, C., Tao, Y., et al. (2018) Dynamic Equivalent Modeling for Microgrids Based on LSTM Recurrent Neural Network. 2018 Chinese Automation Congress (CAC), 30 November-2 December 2018, Xi’an, China, 4020-4024.
https://doi.org/10.1109/CAC.2018.8623202
[14]  王成山, 王守相. 智能微网在分布式能源接入中的作用与挑战[J]. 中国科学院院刊, 2016, 31(2): 232-240.
[15]  Kumar, H.R. and Ushakumari, S. (2016) A Novel Architecture for Data Management and Control in Autonomous Intelligent Microgrid. Procedia Computer Science, 89, 412-421.
https://doi.org/10.1016/j.procs.2016.06.089
[16]  Schiffer, J., Zonetti, D., Ortega, R., et al. (2016) A Survey on Modeling of Microgrids—From Fundamental Physics to Phasors and Voltage Sources. Automatica, 74, 135-150.
https://doi.org/10.1016/j.automatica.2016.07.036
[17]  Lasseter, R.H. (2002) MicroGrids. 2002 IEEE Power Engineering Society Winter Meeting, New York, 305-308.
[18]  Liu, M., Li, L., Ye, H. and Liu, X. (2016) Effectiveness Analysis of the Average Value Modeling of Microgrid. 2016 China International Conference on Electricity Distribution (CICED), Xi’an, 10-13 August 2016.
https://doi.org/10.1109/CICED.2016.7576253
[19]  Biolkova, V., Kolka, Z. and Biolek, D. (2010) State-Space Averaging (SSA) Revisited: On the Accuracy of SSA-Based Line-to-Output Frequency Responses of Switched DC-DC Converters. WSEAS Transactions on Circuits & Systems, 9.
[20]  Dong, L., Ma, H. and Xu, F. (2008) Modeling and Analysis of PWM Converters with a New GSSA Method. 2008 34th Annual Conference of IEEE Industrial Electronics, 3 April 2008.
[21]  Che Y., Xu J., Yang Y., Zhou, J. and Zhao, Y.C. (2018) Large Signal Modeling Method for AC/DC Independent Power System in DQ-Coordinates. IEEE Access, 6, 32207-32215.
https://doi.org/10.1109/ACCESS.2018.2834538
[22]  Wu, X., Zhao, X., Kang, Z., Li, W.L. and Wu, X.H. (2019) Small-Signal Discrete-Time Modeling and Stability Analysis of Digital-Controlled DC-AC Converter with Symmetric PWM. 2019 IEEE 15th International Conference on Control and Automation (ICCA), Edinburgh, Scotland, 16-19 July 2019.
https://doi.org/10.1109/ICCA.2019.8899910
[23]  Maksimovic, D. and Zane, R. (2007) Small-Signal Discrete-Time Modeling of Digitally Controlled PWM Converters. IEEE Transactions on Power Electronics, 22, 2254-2256.
https://doi.org/10.1109/TPEL.2007.909776
[24]  Wu, X., Xiao, G. and Lei, B. (2013) Simplified Discrete-Time Modeling for Convenient Stability Prediction and Digital Control Design. IEEE Transactions on Power Electronics, 28, 5333-5342.
https://doi.org/10.1109/TPEL.2013.2245514
[25]  Shang, J., Li, H., You, X., Zheng, T.Q. and Wang, S. (2015) A Novel Stability Analysis Approach Based on Describing Function Method Using for DC-DC Converters. 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, 15-19 March 2015, 2642-2647.
https://doi.org/10.1109/APEC.2015.7104724
[26]  Arnedo, L., Burgos, R., Boroyevich, D. and Wang, F. (2009) System-Level Black-Box Dc-to-Dc Converter Models. 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Washington DC, 15-19 February 2009.
https://doi.org/10.1109/APEC.2009.4802861
[27]  Guarderas, G., Frances, A., Ramirez, D., Asensi, R. and Uceda, J. (2019) Blackbox Large-Signal Modeling of Grid Connected DC-AC Electronic Power Converters. Energies, 12, 989.
https://doi.org/10.3390/en12060989
[28]  Francés, A., Asensi, R. and Uceda, J. (2019) Blackbox Polytopic Model with Dynamic Weighting Functions for DC-DC Converters. IEEE Access, 7, 160263-160273.
https://doi.org/10.1109/ACCESS.2019.2950983
[29]  Valdivia, V., Lazaro, A., Barrado, A., et al. (2012) Black-Box Modeling of Three-Phase Voltage Source Inverters for System-Level Analysis. IEEE Transactions on Industrial Electronics, 59, 3648-3662.
https://doi.org/10.1109/TIE.2011.2167730
[30]  Arnedo, L., Boroyevich, D., Burgos, R., et al. (2008) Year Polytopic Black-Box Modeling of DC-DC Converters. IEEE Power Electronics Specialists Conference, Rhodes, Greece, June 15-19 2008.
[31]  Jadhav, G.N. and Changan, D.D. (2016) Modelling of Inverter for Stability Analysis of Microgrid. 2016 IEEE 7th Power India International Conference (PIICON), Bikaner, 1-6.
https://doi.org/10.1109/POWERI.2016.8077249
[32]  Jadav, K.A., Karkar, H.M. and Trivedi, I.N. (2017) A Review of Microgrid Architectures and Control Strategy. Journal of the Institution of Engineers, 98, 591-598.
[33]  Azim, M.I., Hossain, M.J., Griffith, F.H.M.R., et al. (2015) An Improved Droop Control Scheme for Islanded Microgrids. 2015 5th Australian Control Conference (AUCC), Gold Coast, 5-6 November 2015, 225-229.
[34]  Nutkani, I.U., Peng, W., Chiang, L.P., et al. (2015) Secondary Droop for Frequency and Voltage Restoration in Microgrids. 2015 17th European Conference on Power Electronics and Applications, Geneva, 1-7.
https://doi.org/10.1109/EPE.2015.7309457
[35]  Banadaki, A.D., Mohammadi, F.D. and Feliachi, A. (2017) State Space Modeling of Inverter Based Microgrids Considering Distributed Secondary Voltage Control. 2017 North American Power Symposium (NAPS), Morgantown, WV, 1-6.
[36]  Narkhede, M.S., Chatterji, S. and Ghosh, S. (2012) Trends and Challenges in Optimization Techniques for Operation and Control of Microgrid: A Review. 2012 1st International Conference on Power and Energy in NERIST (ICPEN), Nirjuli.
[37]  Dimeas, A. and Hatziargyriou, N. (2004) A Multi-Agent System for Microgrids. In: Hellenic Conference on Artificial Intelligence, Springer, Berlin, 447-455.
https://doi.org/10.1007/978-3-540-24674-9_47
[38]  Colson, C.M. and Nehrir, M.H. (2011) Algorithms for Distributed Decision-Making for Multi-Agent Microgrid Power Management. 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, 1-8.
https://doi.org/10.1109/PES.2011.6039764
[39]  Li, T., Xiao, Z., Huang, M., et al. (2010) Control System Simulation of Microgrid Based on IP and Multi-Agent. 2010 International Conference on Information, Networking and Automation (ICINA), Kunming, V1-235-V1-239.
[40]  Palizban, O. and Kauhaniemi, K. (2015) Hierarchical Control Structure in Microgrids with Distributed Generation: Island and Grid-Connected Mode. Renewable and Sustainable Energy Reviews, 44, 797-813.
https://doi.org/10.1016/j.rser.2015.01.008
[41]  Guerrero, J.M., Chandorkar, M., Lee, T. and Loh, P.C. (2013) Advanced Control Architectures for Intelligent Microgrids—Part I: Decentralized and Hierarchical Control. IEEE Transactions on Industrial Electronics, 60, 1254-1262.
https://doi.org/10.1109/TIE.2012.2194969
[42]  Su,W. and Wang, J. (2012) Energy Management Systems in Microgridoperations. The Electricity Journal, 25, 45-60.
https://doi.org/10.1016/j.tej.2012.09.010
[43]  Kim, J., Guerrero, J.M., Rodriguez, P., et al. (2011) Mode Adaptive Droop Control with Virtual Output Impedances for an Inverter Based Flexible AC Microgrid. IEEE Transactions on Power Electronics, 26, 689-701.
https://doi.org/10.1109/TPEL.2010.2091685
[44]  Rocabert, J., Luna, A., Blaabjerg, F. and Rodríguez, P. (2012) Control of Power Converters in AC microgrids. IEEE Transactions on Power Electronics, 27, 4734-4749.
https://doi.org/10.1109/TPEL.2012.2199334
[45]  Olivares, D.E., Mehrizi-Sani, A., Etemadi, A.H., et al. (2014) Trends in Microgrid Control. IEEE Transactions on Smart Grid, 5, 1905-1919.
https://doi.org/10.1109/TSG.2013.2295514
[46]  Vandoorn, T., Zwaenepoel, B., Kooning, J., et al. (2011) Smart Microgrids and Virtual Power Plants in a Hierarchical Control Structure. 2nd European Conference and Exhibition on Innovative Smart Grid Technologies (ISGT-Europe 2011), Manchester, 5-7 December 2011.
https://doi.org/10.1109/ISGTEurope.2011.6162830
[47]  Riverso, S., Sarzo, F. and Ferrari-Trecate, G. (2015) Plug-and-Play Voltage and Frequency Control of Islanded Microgrids with Meshed Topology. IEEE Transactions on Smart Grid, 6, 1176-1184.
https://doi.org/10.1109/TSG.2014.2381093
[48]  Zhao, F., Li, N., Yin, Z. and Tang, X. (2014) Small-Signal Modeling and Stability Analysis of DC Microgrid with Multiple Type of Loads. 2014 International Conference on Power System Technology, Chengdu, 20-22 October 2014, 3309-3315.
https://doi.org/10.1109/POWERCON.2014.6993873
[49]  Hadavi, S., Sanjari, M.J., Yatim, A.H. and Gharehpetian, G.B. (2014) Small Signal Stability Assessment of Islanded VSI-Based Microgrids Considering Load Variations. 2014 IEEE Conference on Energy Conversion (CENCON), Johor Bahru, 13-14 October 2014, 440-444.
https://doi.org/10.1109/CENCON.2014.6967544
[50]  Wang, S., Su, J., Yang, X., et al. (2016) A Review on the Small Signal Stability of Microgrid. 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC 2016-ECCE Asia), Hefei, 22-26 May 2016, 1793-1798.
https://doi.org/10.1109/IPEMC.2016.7512566
[51]  Satheesh Kumar, G.S., Nagarajan, C. and Selvi, S.T. (2018) A Virtual Impedance Based Analysis of Dynamic Stability in a Micro-Grid System. 2018 Conference on Emerging Devices and Smart Systems (ICEDSS), Tiruchengode, 38-41.
https://doi.org/10.1109/ICEDSS.2018.8544374
[52]  Andrade F., Kampouropoulos K., Romeral L., et al. (2014) Study of Large-Signal Stability of an Inverter-Based Generator Using a Lyapunov function. IECON 2014 40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, 29 October-1 November 2014, 1840-1846.
https://doi.org/10.1109/IECON.2014.7048752
[53]  Kabalan, M., Singh, P. and Niebur, D. (2017) Large Signal Lyapunov-Based Stability Studies in Microgrids: A Review. IEEE Transactions on Smart Grid, 8, 2287-2295.
https://doi.org/10.1109/TSG.2016.2521652
[54]  Majumder, R. (2013) Some Aspects of Stability in Microgrids. IEEE Transactions on Power Systems, 28, 3243-3252.
https://doi.org/10.1109/TPWRS.2012.2234146
[55]  Du, W., Zhang, J., Zhang, Y. and Qian, Z. (2013) Stability Criterion for Cascaded System with Constant Power Load. IEEE Transactions on Power Electronics, 28, 1843-1851.
https://doi.org/10.1109/TPEL.2012.2211619
[56]  Topcu, U. and Packard, A. (2009) Linearized Analysis versus Optimization Based Nonlinear Analysis for Nonlinear Systems. 2009 American Control Conference (ACC), St. Louis, MO, 10-12 June 2009, 790-795.
https://doi.org/10.1109/ACC.2009.5160528
[57]  Liu, X., Gao, Z. and Bian, Y. (2018) Large Signal Stability Analysis of AC Microgrids Considering the Storage System. 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, 7-10 October 2018, 2023-2027.
https://doi.org/10.23919/ICEMS.2018.8549445
[58]  杨苹, 陈敬峰, 彭嘉俊, 等. 微电网系统建模的挑战——“智能微电网与可再生能源系统的关键技术”专题(前言) [J]. 控制理论与应用, 2017, 34(8): 1046-1052.
[59]  赵卓立, 杨苹, 许志荣, 等. 多源多变换微电网大扰动暂态稳定性研究综述[J]. 电网技术, 2017, 41(7): 2195-2204.
[60]  张文亮, 刘壮志, 王明俊, 等. 智能电网的研究进展及发展趋势[J]. 电网技术, 2009, 33(13): 1-11.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133