全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

(H2O)10团簇双层五元环结构稳定性的研究
The Stabilities of Stacked Cyclic Pentamers of (H2O)10 Cluster

DOI: 10.12677/APP.2020.105036, PP. 281-285

Keywords: (H2O)10团簇,从头计算,稳定性,振动光谱
(H2O)10
, Ab Initio Calculation, Stabilities, Vibration Spectrum

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文优化了(H2O)10团簇的五个双层五元环结构,比较了其稳定性,并计算了其振动频率。计算表明五个双层五元环结构几乎是简并的,当其中一层五元环中OH…O是逆时针连接,另一层是顺时针,两层五元环中氢键连接方向相反时,团簇结构能量较低。对频率计算分析表明氢键的连接方式不同,使H2O中H-O-H的弯曲振动和参与形成氢键的O-H伸缩振动不同。
In this paper, the structures of stacked cyclic pentamers of (H2O)10 clusters are optimized, and the stabilities are compared, and the vibrational frequencies are calculated. The calculations show that the structure of five stacked cyclic pentamers of (H2O)10 is almost degenerate. In the lowest energy structure, the hydrogen bonding direction in two cyclic pentamers is opposite. The calculation and analysis of the vibrational frequencies show that the bending vibrations of H-O-H and the stretching vibration of O-H which involved in the formation of hydrogen bond are different.

References

[1]  Hartke, B. (2002) Structural Transitions in Clusters. Angewandte Chemie International Edition, 41, 1468-1487.
https://doi.org/10.1002/1521-3773(20020503)41:9<1468::AID-ANIE1468>3.0.CO;2-K
[2]  Liu, K., Cruzan, J.D. and Saykally, R.J. (1996) Water Clusters. Science, 271, 929-933.
https://doi.org/10.1126/science.271.5251.929
[3]  Muller-Dethlefs, K. and Hobza, P. (2000) Noncovalent Inter-actions: A Challenge for Experiment and Theory. Chemical Reviews, 100, 143-168.
https://doi.org/10.1021/cr9900331
[4]  Pugliano, N. and Saykally, R.J. (1992) Measurement of Quantum Tun-neling between Chiral Isomers of the Cyclic Water Trimer. Science, 257, 1937-1940.
https://doi.org/10.1126/science.1411509
[5]  Huisken, F., Kaloudis, M. and Kulcke, A. (1996) Infrared Spec-troscopy of Small Size-Selected Water Clusters. Journal of Chemical Physics, 104, 17.
https://doi.org/10.1063/1.470871
[6]  Nauta, K. and Miller, R.E. (2000) Formation of Cyclic Water Hexamer in Liquid Helium: The Smallest Piece of Ice. Science, 287, 293-295.
https://doi.org/10.1126/science.287.5451.293
[7]  Brudermann, J., Melzer, M., Buck, U., Kazimirski, J.K., Sadlej, J. and Bush, V. (1999) The Asymmetric Cage Structure of (H2O)7 from a Combined Spectroscopic and Computational Study. Journal of Chemical Physics, 110, 10649.
https://doi.org/10.1063/1.479008
[8]  Gruenloh, C.J., Carney, J.R., Arrington, C.A., Zwier, T.S., Fredericks, S.Y. and Jordan, K.D. (1997) Infrared Spectrum of a Molecular Ice Cube: The S4 and D2d Water Octamers in Ben-zene-(Water)8. Science, 276, 1678-1681.
[9]  Buck, U., Ettischer, I., Melzer, M., Buch, V. and Sadlej, V. (1998) Structure and Spectra of Three-Dimensional (H2O)n Clusters, n = 8, 9, 10. Physical Review Letters, 80, 2578.
https://doi.org/10.1103/PhysRevLett.80.2578
[10]  Blanton, W.B., Gordon-Wylie, S.W., Clark, G.R., Jordan, K.D., Wood, J.T., Geiser, U. and Collins, T. (1999) Synthesis and Crystallographic Characterization of an Octameric Water Complex, (H2O)8. Journal of the American Chemical Society, 121, 3551-3552.
https://doi.org/10.1021/ja982100z
[11]  Guimares, F.F., Belchior, J.C., Johnston, R.L. and Robert, C. (2002) Global Optimization Analysis of Water Clusters (H2O)n (11 ≤ n ≤ 13) through a Genetic Evolutionary Approach. Journal of Chemical Physics, 116, 8327.
https://doi.org/10.1063/1.1471240
[12]  Kabrede, H. and Hentschke, R. (2003) Global Minima of Water Clusters (H2O)N, N ≤ 25, Described by Three Empirical Potentials. The Journal of Physical Chemistry B, 107, 3914-3920.
https://doi.org/10.1021/jp027783q
[13]  James, T., Wales, D.J. and Hernández-Rojas, J. (2005) Global Minima for Water Clusters (H2O)n, n ≤ 21, described by a Five-Site Empirical Potential. Chemical Physics Letters, 415, 302-307.
https://doi.org/10.1016/j.cplett.2005.09.019
[14]  Bandow, B. and Hartke, B. (2006) Larger Water Clusters with Edges and Corners on Their Way to Ice: Structural Trends Elucidated with an Improved Parallel Evolutionary Algorithm. The Journal of Physical Chemistry A, 110, 5809-5822.
https://doi.org/10.1021/jp060512l
[15]  Li, F.Y., Liu, Y., Wang, L., Zhao, J.J. and Chen, Z. (2012) Improved Stability of Water Clusters (H2O)30-48: A Monte Carlo Search Coupled with DFT Computations. Theoretical Chemistry Accounts, 131, Article No. 1163.
https://doi.org/10.1007/s00214-012-1163-5
[16]  Lee, C., Chen, H. and Fitzgerald, G. (1995) Chemical Bonding in Water Clusters. Journal of Chemical Physics, 102, 1266.
https://doi.org/10.1063/1.468914
[17]  Bulusu, S., Yoo, S., Apra, E., Xantheas, S.S. and Zeng, X.C. (2006) Lowest-Energy Structures of Water Clusters (H2O)11 and (H2O)13. The Journal of Physical Chemistry A, 110, 11781-11784.
https://doi.org/10.1021/jp0655726
[18]  Yoo, S., Apr, E., Zeng, X.C. and Xantheas, S.S. (2010) High-Level Ab Initio Electronic Structure Calculations of Water Clusters (H2O)16 and (H2O)17: A New Global Minimum for (H2O)16. The Journal of Physical Chemistry Letters, 1, 3122-3127.
https://doi.org/10.1021/jz101245s
[19]  Hammond, J.R., Govind, N., Kowalski, K., Autschbach, J. and Xantheas, S.S. (2009) Accurate Dipole Polarizabilities for Water Clusters n = 2 - 12 at the Coupled-Cluster Level of Theory and Benchmarking of Various Density Functionals. Journal of Chemical Physics, 131, 214103.
https://doi.org/10.1063/1.3263604
[20]  Shields, R.M., Temelso, B., Archer, K.A., Morrell, T.E. and Shields, G.C. (2010) Accurate Predictions of Water Cluster Formation, (H2O)n=2-10. The Journal of Physical Chemistry A, 114, 11725.
https://doi.org/10.1021/jp104865w
[21]  Yoo, S. and Xantheas, S.S. (2012) Chapter 21. In: Leszczynski, J., Ed., Handbook of Computational Chemistry, Vol. 2, Springer, New York, 761-792.
[22]  Howard, J.C. and Tschumper, G.S. (2014) Wiley Interdisciplinary Reviews: Comput. Molecular Sciences, 4, 169.
[23]  Wales, D.J., Doye, J.P.K., Dullweber, A., Hodges, M.P., Naumkin, F.Y., Calvo, F., Hernndez-Rojas, J. and Middleton, T.F. (n.d.) The Cambridge Cluster Database.
http://www-wales.ch.cam.ac.uk/CCD.html
[24]  M?ller, C. and Plesset, M.S. (1934) Note on an Approximation Treatment for Many-Electron Systems. Physical Review, 46, 618-622. https://doi.org/10.1103/PhysRev.46.618

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133