全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

准地转方程在Besov-Herz空间上的局部适定性
On the Well-Posedness of the Quasi-Geostrophic Equation in the Besov-Herz Spaces

DOI: 10.12677/PM.2020.105065, PP. 530-539

Keywords: 局部适定性,Besov-Herz空间,准地转方程
Local Well-Posedness
, Besov-Herz Spaces, Quasi-Geostrophic Equation

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文利用Littlewood-Paley分解和交换子估计,建立了无粘准地转方程在Besov-Herz空间上的局部适定性,推广了和的结果。
In this paper, using the Littlewood-Paley decomposition and commutator estimates, we establish the local well-posedness for the quasi-geostrophic equation without viscosity in Besov-Herz spaces, which improves the results in and.

References

[1]  Constantin, P., Majda, A.J. and Tabak, E. (1994) Formation of Strong Fronts in the 2-D Quasi-Geostrophic Thermal Active Scalar. Nonlinearity, 7, 1495-1533.
https://doi.org/10.1088/0951-7715/7/6/001
[2]  Wu, J. (1997) Qua-si-Geostrophic-Type Equations with Initial Data in Morrey Spaces. Nonlinearity, 10, 409-1420.
https://doi.org/10.1088/0951-7715/10/6/002
[3]  Chae, D. (2003) The Quasi-Geostrophic Equation in the Triebel-Lizorkin Spaces. Nonlinearity, 16, 479-495.
https://doi.org/10.1088/0951-7715/16/2/307
[4]  Wang, H. and Jia, H. (2009) Local Well-Posedness for the 2D Non-Dissipative Quasi-Geostrophic Equation in Besov Spaces. Nonlinear Analysis: Theory, Methods & Applications, 70, 3791-3798.
https://doi.org/10.1016/j.na.2008.07.035
[5]  Xu, J. and Tan, Y. (2013) The Well-Posedness of the Surface Quasi-Geostrophic Equations in the Besov-Morrey Spaces. Nonlinear Analysis: Theory, Methods & Applications, 92, 60-71.
https://doi.org/10.1016/j.na.2013.06.019
[6]  Herz, C. (1969) Lipschitz Spaces and Bernstein’s Theorem on Absolutely Convergent Fourier Transforms. Indiana University Mathematics Journal, 18, 283-323.
https://doi.org/10.1512/iumj.1969.18.18024
[7]  Ferreira, L.C.F. and Pacutérez-Lórez, J.E. (2017) On the Theory of Besov-Herz Spaces and Euler Equations. Israel Journal of Mathematics, 220, 283-332.
https://doi.org/10.1007/s11856-017-1519-6
[8]  Li, X. and Yang, D. (1996) Boundedness of Some Sublinear Operators on Herz Spaces. Illinois Journal of Mathematics, 40, 484-501.
https://doi.org/10.1215/ijm/1255986021
[9]  Fefferman, C. and Stein, E.M. (1971) Some Maximal Inequalities. American Journal of Mathematics, 93, 107-115.
https://doi.org/10.2307/2373450

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133