|
Pure Mathematics 2020
非线性延迟波动方程的两类差分格式
|
Abstract:
本文对一类非线性延迟波动方程建立了两类显式差分格式。运用能量法,证明了在最大模意义下它们在时、空方向上均有二阶收敛率。数值结果验证了算法的精度和有效性。
This study is concerned with numerical solutions of delayed wave equations by explicit finite dif-ference methods. By using the discrete energy method, it is shown that both of them are temporally and spatially second-order convergent in maximum norm. Numerical findings confirm the accuracy and efficiency of the algorithms.
[1] | 熊君, 李俊民, 等. 一阶双曲型偏微分方程的模糊边界控制[J]. 数学物理学报, 2017, 37(3): 469-477. |
[2] | 张在斌, 孙志忠. 一类非线性延迟抛物偏微分方程的Crank-Nicolson型差分格式[J]. 数值计算与计算机应用, 2010, 31(2): 131-140. |
[3] | 池永日. 一类高精度非线性延迟抛物偏微分方程的紧差分格式[J]. 延边大学学报(自然科学版), 2010, 36(4): 287-290. |
[4] | Xie, J., Deng, D. and Zheng, H. (2017) A Compact Difference Scheme for One-Dimensional Nonlinear Delay Reaction-Diffusion Equations with Variable Coefficient. IAENG International Journal of Applied Mathematics, 47, 14-19. |
[5] | Xie, J., Deng, D. and Zheng, H. (2017) Fourth-Order Difference Solv-ers for Nonlinear Delayed Fractional Sub-Diffusion Equations with Variable Coefficients. International Journal of Modelling and Simulation, 37, 241-251. https://doi.org/10.1080/02286203.2017.1358133 |
[6] | 张启峰, 张诚坚, 邓定文. 求解非线性时滞双曲型偏微分方程的紧致差分方法及Richardson外推算法[J]. 数值计算与计算机应用, 2013, 34(3): 167-176. |
[7] | 孙志忠. 偏微分方程数数值解法[M]. 北京: 科学出版社, 2012: 110-171. |
[8] | Deng, D. (2018) Unified Compact ADI Methods for Solving Nonlinear Viscous and Nonviscous Wave Equations, Chinese Journal of Physics, 56, 2897-2915. https://doi.org/10.1016/j.cjph.2018.09.025 |