|
Pure Mathematics 2020
Bergman空间上的Toeplitz算子的乘积有限和问题
|
Abstract:
本文讨论了Bergman空间上两个形如Tfk,Tgk的Toeplitz算子,其中假设gk=g1(k)+g2(k),g1(k)=aj(k) zj,g2(k)=
bj(k)zj∈H∞(D);fk∈L∞(D,dA)。fk(reiθ)=
fp(k)(r)eipθ(1≤k≤N)。探究Toeplitz算子Tfk,Tgk的有限乘积有限和的相关问题,分析计算得到了其为零算子的一个必要条件。
This paper discusses two Toeplitz operators as Tfk, Tgk in Bergman space. In case gk=g1(k)+g2(k), g1(k)=aj(k) zj, g2(k)=
bj(k)zj∈H∞(D); fk∈L∞(D,dA). fk(reiθ)=
fp(k)(r)eipθ(1≤k≤N). This paper explores the related problems of the sum of the finite products of the two Toeplitz operators as Tfk, Tgk under a large amount of data and calculations. A necessary condition of zero operator is obtained (N).
[1] | Choe, B.R., Koo, H. and Lee, Y.J. (2008) Sums of Toeplitz Products with Harmonic Symbols. Revista Matemática Iberoamericana, 24, 43-70. https://doi.org/10.4171/rmi/529 |
[2] | Lu, Y., Liu, L., Ding, Q., et al. (2017) Zero Products and Finite Rank of Toeplitz Operators on the Harmonic Bergman Space. Journal of Mathematical Research with Applications, 37, 325-334. |
[3] | Remmert, R. (1998) Classical Topics in Complex Funtion Theory. Graduate Texts in Mathematics. Springer, New York. |
[4] | ?u?kovi?, ?. (2003) Berezin versus Mellin. Journal of Mathematical Analysis and Applications, 287, 234-243. https://doi.org/10.1016/s0022-247x(03)00546-8 |