|
Pure Mathematics 2020
加权Bergman空间上Toeplitz算子的乘积的有限和问题
|
Abstract:
函数空间算子理论一直是泛函分析研究中的一个重要分支之一。本文研究了加权Bergman空间上Toeplitz算子Tφ2,其中φ(re)iθ=eisθφ0(r),且δ∈Z,δ<0,φα(r)∈?α为亚正规算子的一个必要条件。
Function space operator theory has always been one of the important branches in functional analysis research. This paper studies Toeplitz operator in weighted Bergman space Tφ2, in which φ(re)iθ=eisθφ0(r), and δ∈Z, δ<0; φα(r)∈?α is a necessary condition for subnormal operator.
[1] | Hwang, I.S. (2005) Hyponormal Toeplitz Operators on the Bergman Space. Journal of the Korean Mathematical Society, 42, 387-403. https://doi.org/10.4134/jkms.2005.42.2.387 |
[2] | Phukon, A. and Hazarika, M. (2013) Necessary Conditions for Hyponormality of Toeplitz Operators on the Bergman Space. International Journal of Mathematical Analysis, 7, 485-490. https://doi.org/10.12988/ijma.2013.13044 |
[3] | Remmert, R. (1997) Classical Topics in Complex Funtion Theory. Graduate Texts in Mathematics. |
[4] | Louhichi, I., Strouse, E. and Zakariasy, L. (2006) Products of Toeplitz Operators on the Bergman Space. Integral Equations Operator Theory, 54, 525-539. https://doi.org/10.1007/s00020-005-1369-1 |
[5] | Lu, Y. and Liu, C. (2009) Commutativity and Hyponormality of Toeplitz Operators on the Weighted Bergman Space. Journal of the Korean Mathematical Society, 46, 621-642. https://doi.org/10.4134/jkms.2009.46.3.621 |