|
Pure Mathematics 2020
无穷维序列空间的线性n-宽度
|
Abstract:
本文讨论了无穷维序列空间的线性n-宽度,并估计其精确渐近阶。
The linear n-width of infinite-dimensional sequence space is discussed in this paper, and its sharp asymptotic order is estimated.
[1] | Kolmogorov, A.N. (1936) Uber die deste Annaherung von funktionen einer gegebenen funktioneklasse. Annals of Mathematics, No. 37, 107-111. https://doi.org/10.2307/1968691 |
[2] | Stechkin, S.R. (1954) On Best Approxima-tion of Given Classes of Functions by Arbitrary Polynomials. Uspekhi Matematicheskikh Nauk, 9, 133-134. (In Rus-sian) |
[3] | Tikhomirov, V.M. (1960) Diameters of Sets in Function Spaces and the Theory of Best Approximations. Uspekhi Matematicheskikh Nauk, 15, 81-120. |
[4] | Tikhomirov, V.M. (1969) Best Methods of Approximation of Dif-ferentiable Functions in the Space. Matematicheskii Sbornik, 80, 290-340. |
[5] | Tikhomirov, V.M. (1976) Some Prob-lems in the Theory of Approximation. Nauka, Moscow. |
[6] | Tikhomirov, V.M. (1990) Theory of Extremal Problems and Approximation Theory. Advances in Mathematics, 19, 449-451. (In Chinese) |
[7] | Pietsch, A. (1974) s-Numbers of Operators in Banach Spaces. Studia Mathematica, No. 51, 201-223. https://doi.org/10.4064/sm-51-3-201-223 |
[8] | Pinkus, A. (1985) n-Widths in Approximation Theory. Springer, Berlin. |