全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

无穷维序列空间的线性n-宽度
Linear n-Width of Infinite-Dimensional Sequence Space

DOI: 10.12677/PM.2020.105055, PP. 458-462

Keywords: 无穷维序列空间,线性n-宽度,渐近阶
Infinite-Dimensional Sequence Space
, Linear n-Width, Asymptotic Order

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文讨论了无穷维序列空间的线性n-宽度,并估计其精确渐近阶。
The linear n-width of infinite-dimensional sequence space is discussed in this paper, and its sharp asymptotic order is estimated.

References

[1]  Kolmogorov, A.N. (1936) Uber die deste Annaherung von funktionen einer gegebenen funktioneklasse. Annals of Mathematics, No. 37, 107-111.
https://doi.org/10.2307/1968691
[2]  Stechkin, S.R. (1954) On Best Approxima-tion of Given Classes of Functions by Arbitrary Polynomials. Uspekhi Matematicheskikh Nauk, 9, 133-134. (In Rus-sian)
[3]  Tikhomirov, V.M. (1960) Diameters of Sets in Function Spaces and the Theory of Best Approximations. Uspekhi Matematicheskikh Nauk, 15, 81-120.
[4]  Tikhomirov, V.M. (1969) Best Methods of Approximation of Dif-ferentiable Functions in the Space. Matematicheskii Sbornik, 80, 290-340.
[5]  Tikhomirov, V.M. (1976) Some Prob-lems in the Theory of Approximation. Nauka, Moscow.
[6]  Tikhomirov, V.M. (1990) Theory of Extremal Problems and Approximation Theory. Advances in Mathematics, 19, 449-451. (In Chinese)
[7]  Pietsch, A. (1974) s-Numbers of Operators in Banach Spaces. Studia Mathematica, No. 51, 201-223.
https://doi.org/10.4064/sm-51-3-201-223
[8]  Pinkus, A. (1985) n-Widths in Approximation Theory. Springer, Berlin.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133