|
基于MFO-LSSVM的船舶交通流量预测模型
|
Abstract:
[1] | 冯宏祥, 肖英杰, 孔凡邨. 基于支持向量机的船舶交通流量预测模型[J]. 中国航海, 2011, 34(4): 62-66. |
[2] | 张浩, 张晓东, 肖英杰, 等. 组合粗糙集和支持向量回归的船舶交通流预测[J]. 计算机工程与应用, 2012: 251-254. |
[3] | 张树奎, 肖英杰. 考虑周期性波动因素的船舶交通流量预测模型[J]. 大连海事大学学报, 2016, 42(4): 41-46. |
[4] | Qi, L., Zheng, Z. and Gang, L. (2016) A Cellular Automaton Model for Ship Traffic Flow in Waterways. Physica A Statistical Mechanics & Its Applications, 471, 705-717. https://doi.org/10.1016/j.physa.2016.12.028 |
[5] | Ghosh, B., Basu, B. and O’Mahony, M. (2010) Random Process Model for Urban Traffic Flow Using a Wavelet- Bayesian Hierarchical Technique. Computer-Aided Civil & Infrastructure Engineering, 25, 613-624.
https://doi.org/10.1111/j.1467-8667.2010.00681.x |
[6] | Sujay, R.N. and Deka, P.C. (2014) Support Vector Machine Applications in the Field of Hydrology: A Review. Applied Soft Computing Journal, 19, 372-386. https://doi.org/10.1016/j.asoc.2014.02.002 |
[7] | Xiao, X., Yang, J., Mao, S., et al. (2017) An Improved Seasonal Rolling Grey Forecasting Model Using a Cycle Truncation Accumulated Generating Operation for Traffic Flow. Applied Mathematical Modelling, 51, 386-404.
https://doi.org/10.1016/j.apm.2017.07.010 |
[8] | Kumar, S.V. and Vanajakshi, L. (2015) Short-Term Traffic Flow Prediction Using Seasonal ARIMA Model with Limited Input Data. European Transport Research Review, 7, 21. https://doi.org/10.1007/s12544-015-0170-8 |
[9] | Mirjalili, S. (2015) Moth-Flame Optimization Algorithm: A Novel Nature-Inspired Heuristic Paradigm. Knowledge- Based Systems, 89, 228-249. https://doi.org/10.1016/j.knosys.2015.07.006 |
[10] | Suykens, J.A.K. and Vandewalle, J. (1999) Least Squares Support Vector Machine Classifiers. Kluwer Academic Publishers. https://doi.org/10.1002/(SICI)1097-007X(199911/12)27:6<605::AID-CTA86>3.0.CO;2-Z |
[11] | 崔东文. 飞蛾火焰优化算法在承压含水层参数反演中的应用[J]. 长江科学院院报, 2016, 33(7): 28-33. |