全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于MFO-LSSVM的船舶交通流量预测模型
Prediction Model of Ship Traffic Flow Based on MFO-LSSVM

DOI: 10.12677/OJTT.2019.94034, PP. 279-288

Keywords: 智能交通,交通流量预测,飞蛾火焰优化算法,船舶交通流量,最小二乘支持向量机
Intelligent Transportation
, Traffic Flow Prediction, Moth-Flame Optimization, Ship Traffic Flow, Least Squares Support Vector Machine

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对当前船舶交通流模型没有充分考虑流量数据本身特性、预测方法精度不高的问题,提出了一种基于飞蛾火焰优化算法(Moth-flame Optimization, MFO)和最小二乘支持向量机(least squares support vector machine, LSSVM)的预测模型,该模型主要利用飞蛾火焰算法对LSSVM模型内部参数进行优化,基于采集的数据进行模型训练和预测。为验证模型有效性,利用我国广东省船舶交通流量等相关数据进行实验,并与FOA-LSSVM、PSO-LSSVM和GA-LSSVM等模型进行对比分析,结果表明MFO-LSSVM模型具有较高的预测精度和预测效率,验证了方法的有效性,可以用于船舶交通流量的预测。
Current dominant ship traffic flow prediction models don’t consider the characteristics of the data and achieve high accuracy in the prediction process, to resolve these problems, a prediction model based on moth flame optimization algorithm and least squares support vector machine is proposed from the perspective of influencing factors of ship traffic flow. The essence of the model is to optimize the internal parameters of LSSVM model by moth flame algorithm and the model is trained based on collected data. To verify the validity of the proposed model, experiments are conducted based on the relevant data of ship traffic flow in Guangdong Province of China, and compared with FOA-LSSVM, PSO-LSSVM and GA-LSSVM models, the experimental results show that the MFO-LSSVM model has higher prediction accuracy and efficiency, the effectiveness of the proposed model is verified and can be used for the prediction of ship traffic flow.

References

[1]  冯宏祥, 肖英杰, 孔凡邨. 基于支持向量机的船舶交通流量预测模型[J]. 中国航海, 2011, 34(4): 62-66.
[2]  张浩, 张晓东, 肖英杰, 等. 组合粗糙集和支持向量回归的船舶交通流预测[J]. 计算机工程与应用, 2012: 251-254.
[3]  张树奎, 肖英杰. 考虑周期性波动因素的船舶交通流量预测模型[J]. 大连海事大学学报, 2016, 42(4): 41-46.
[4]  Qi, L., Zheng, Z. and Gang, L. (2016) A Cellular Automaton Model for Ship Traffic Flow in Waterways. Physica A Statistical Mechanics & Its Applications, 471, 705-717.
https://doi.org/10.1016/j.physa.2016.12.028
[5]  Ghosh, B., Basu, B. and O’Mahony, M. (2010) Random Process Model for Urban Traffic Flow Using a Wavelet- Bayesian Hierarchical Technique. Computer-Aided Civil & Infrastructure Engineering, 25, 613-624.
https://doi.org/10.1111/j.1467-8667.2010.00681.x
[6]  Sujay, R.N. and Deka, P.C. (2014) Support Vector Machine Applications in the Field of Hydrology: A Review. Applied Soft Computing Journal, 19, 372-386.
https://doi.org/10.1016/j.asoc.2014.02.002
[7]  Xiao, X., Yang, J., Mao, S., et al. (2017) An Improved Seasonal Rolling Grey Forecasting Model Using a Cycle Truncation Accumulated Generating Operation for Traffic Flow. Applied Mathematical Modelling, 51, 386-404.
https://doi.org/10.1016/j.apm.2017.07.010
[8]  Kumar, S.V. and Vanajakshi, L. (2015) Short-Term Traffic Flow Prediction Using Seasonal ARIMA Model with Limited Input Data. European Transport Research Review, 7, 21.
https://doi.org/10.1007/s12544-015-0170-8
[9]  Mirjalili, S. (2015) Moth-Flame Optimization Algorithm: A Novel Nature-Inspired Heuristic Paradigm. Knowledge- Based Systems, 89, 228-249.
https://doi.org/10.1016/j.knosys.2015.07.006
[10]  Suykens, J.A.K. and Vandewalle, J. (1999) Least Squares Support Vector Machine Classifiers. Kluwer Academic Publishers.
https://doi.org/10.1002/(SICI)1097-007X(199911/12)27:6<605::AID-CTA86>3.0.CO;2-Z
[11]  崔东文. 飞蛾火焰优化算法在承压含水层参数反演中的应用[J]. 长江科学院院报, 2016, 33(7): 28-33.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133