全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

低碳条件下的配送中心路径优化研究
Research on Distribution Center Route Optimization under Low-Carbon Conditions

DOI: 10.12677/OJTT.2020.93029, PP. 242-250

Keywords: 碳排放,时间窗,配送路线规划,遗传算法
Carbon Emissions
, Time Window, Distribution Route Planning, Genetic Algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

配送路径的选择直接影响着物流配送成本的构成且占有较大比例,合理规划配送路线能够有效提升客户满意度的同时并降低相关企业的配送成本。本文针对某公司配送中心满足客户需求时的配送路径进行优化,将各个需求点加载相应的需求量和时间窗后,建立客户满意度和配送成本函数,最终结合低碳、时间窗、客户满意度、成本等因素得出配送路径的多目标优化模型。使用遗传算法进行求解,结果表明该模型能够达到预期效果并显著降低了配送中心在配送过程中的成本,具有一定的实际指导意义。
The choice of distribution path directly affects the composition of logistics distribution costs and occupies a large proportion. Proper planning of distribution routes can effectively improve customer satisfaction and reduce the distribution costs of related companies. This paper optimizes the distribution path when a company’s distribution center meets customer needs, loads each demand point with the corresponding demand and time window, establishes customer satisfaction and distribution cost functions, and finally combines low carbon, time window, and customer satisfaction, cost and other factors to build the multi-objective optimization model of the distribution path. Using genetic algorithm to solve, the results show that the model can achieve the expected effect and significantly reduce the cost of the distribution center in the distribution process, which has certain practical guiding significance.

References

[1]  Piecyk, M.I. and Mckinnon, A.C. (2010) Forecasting the Carbon Foot-Print of Road Freight Transport in 2020. Interna-tional Journal of Production Economics, 128, 31-42.
https://doi.org/10.1016/j.ijpe.2009.08.027
[2]  Solomon, M.M. (1986) On the Worst-Case Performance of some Heuristics for the Vehicle Routing and Scheduling Problem with Time Window Constraints. Networks, 16, 61-174.
https://doi.org/10.1002/net.3230160205
[3]  Ombuko, B., Nakamura, M. and Osamu, M. (2002) A Hybrid Search Based on Genetic Algorithm and Tabu Search for Vehicle Rout-ing. 6th International Conference on Artificial Intelligence and Soft Computing, Banff, 17-19 July 2002, 176-181.
[4]  石建力, 张锦. 需求点随机的分批配送VRP模型与算法研究[J]. 控制与决策, 2017, 32(2): 213-222.
[5]  范立南, 董冬艳, 李佳洋, 等. 基于生鲜农产品的冷链物流配送路径优化[J]. 沈阳大学学报(自然科学版), 2017, 29(2): 125-131.
[6]  邱雅君, 宋国防. 考虑碳排放因素的车辆路径问题研究[J]. 物流技术, 2012, 31(13): 227-229.
[7]  朱长征, 李艳玲. 碳排量最小的车辆路径优化问题研究[J]. 计算机工程与应用, 2013, 49(22): 15-18.
[8]  张丽萍, 柴跃廷, 曹节. 有时间窗车辆路径问题的改进遗传算法[J]. 计算机集成制造系统, 2002, 8(6): 451-454.
[9]  张海刚, 顾幸生, 王军伟. 基于改进免疫遗传算法的带硬时间窗车辆调度问题的实现[J]. 微电子学与计算机, 2007, 24(6): 218-221.
[10]  杨宇栋, 郎茂祥, 胡思继. 有时间窗车辆路径问题的模型及其改进模拟退火算法研究[J]. 管理工程学报, 2006, 20(3): 104-107.
[11]  康凯, 韩杰, 普玮, 等. 生鲜农产品冷链物流低碳配送路径优化研究[J]. 计算机工程与应用, 2019, 55(2): 259-265.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133