全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大理岩加卸载试验变形及能量转换研究
Study on Deformation and Energy Characteristics of Marble during Loading and Unloading

DOI: 10.12677/HJCE.2020.95054, PP. 512-520

Keywords: 岩石力学,加卸载破坏试验,能量
Rock Mechanics
, Loading and Unloading Test, Energy

Full-Text   Cite this paper   Add to My Lib

Abstract:

对大理岩进行常规三轴以及峰前、峰后恒轴压卸围压破坏试验,研究岩石在不同应力路径下的力学特性及破坏过程中的能量演化规律,得到结论:岩样在卸荷过程中产生的环向与体积应变很大,而轴向应变很小,扩容现象明显;围压对能量耗散起抑制作用,从而延缓弹性应变能的释放,这种现象在常规三轴试验中尤为明显,而在卸荷路径下,弹性应变能释放速率加快,模型破坏更加剧烈;常规三轴试验中,应变软化阶段消耗的能量值最多。峰前卸荷岩样在平台期结束后消耗能量值最多。峰后卸荷岩样在平台期结束位置,耗散能曲线增长率明显减小,表明在此之前,主剪切面基本形成,不需要再消耗大量能量。
The conventional triaxial test of the marble samples and the failure test of constant axial pressure unloading and confining pressure before and after the peak were carried out to study the mechanical properties of the rock under different stress paths and the energy evolution law during the failure process. The hoop and volume strain generated during the unloading process are large, while the axial strain is small, and the expansion phenomenon is obvious; the confining pressure suppresses the energy dissipation, thereby delaying the release of elastic strain energy. This phenomenon is found in conventional triaxial. It is particularly obvious in the test, and under the unloading path, the elastic strain energy release rate is accelerated, and the model is more violently damaged; in the conventional triaxial test, the energy value consumed in the strain softening stage is the most. The unloaded rock sample before the peak consumes the most energy value after the end of the platform period. After the peak unloading, rock sample is at the end of the platform period, the growth rate of the dissipated energy curve is significantly reduced, indicating that before this, the main shear plane is basically formed, and no more energy is needed.

References

[1]  邱士利, 冯夏庭, 张传庆, 周辉, 孙峰. 不同卸围压速率下深埋大理岩卸荷力学特性试验研究[J]. 岩石力学与工程学报, 2010, 29(9): 1807-1817.
[2]  张军伟, 姜德义, 赵云峰, 陈结, 李林. 分阶段卸荷过程中构造煤的力学特征及能量演化分析[J]. 煤炭学报, 2015, 40(12): 2820-2828.
[3]  Kojima, Y. and Yashiro, K. (2005) Deformation Behavior of Tunnel Lining due to Ground Surface Loading and Unloading above the Tunnel. Quarterly Report of RTRI, 46, 143-146.
https://doi.org/10.2219/rtriqr.46.143
[4]  雷涛, 周科平, 胡建华, 高峰. 卸荷岩体力学参数劣化规律的细观损伤分析[J]. 中南大学学报(自然科学版), 2013, 44(1): 275-281.
[5]  朱其志, 闵中泽, 王岩岩, 王伟. 粉砂岩三轴压缩试验中的试样尺寸效应研究[J]. 岩石力学与工程学报, 2019, 38(S2): 3296-3303.
[6]  郭延辉, 侯克鹏, 孙华芬, 谢富英. 地下金属矿山深部开采引起地表移动变形规律研究[J]. 有色金属(矿山部分), 2011, 63(5): 36-40+45.
[7]  李夕兵, 姚金蕊, 宫凤强. 硬岩金属矿山深部开采中的动力学问题[J]. 中国有色金属学报, 2011, 21(10): 2551-2563.
[8]  陈子全, 李天斌, 陈国庆, 马春驰. 不同应力路径下砂岩能耗变化规律试验研究[J]. 工程力学, 2016, 33(6): 120-128.
[9]  李天斌, 陈子全, 陈国庆, 马春驰, 唐欧玲, 王敏杰. 不同含水率作用下砂岩的能量机制研究[J]. 岩土力学, 2015, 36(S2): 229-236.
[10]  黄达, 谭清, 黄润秋. 高围压卸荷条件下大理岩破碎块度分形特征及其与能量相关性研究[J]. 岩石力学与工程学报, 2012, 31(7): 1379-1389.
[11]  谢和平, 彭瑞东, 鞠杨. 岩石变形破坏过程中的能量耗散分析[J]. 岩石力学与工程学报, 2004(21): 3565-3570.
[12]  高速, 张黎明, 王在泉, 丛宇. 大理岩卸荷破坏变形及能量特征研究[J]. 岩石力学与工程学报, 2014, 33(S1): 2808-2813.
[13]  陈卫忠, 吕森鹏, 郭小红, 乔春江. 基于能量原理的卸围压试验与岩爆判据研究[J]. 岩石力学与工程学报, 2009, 28(8): 1530-1540.
[14]  刘天为, 何江达, 徐文杰. 大理岩三轴压缩破坏的能量特征分析[J]. 岩土工程学报, 2013, 35(2): 395-400.
[15]  梁运培, 李清淼, 顾义磊, 邹全乐, 李全贵. 不同围压下页岩残余强度及破裂面特征的试验研究[J]. 采矿与安全工程学报, 2017, 34(6): 1179-1185.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133