|
正交异性板裂纹端部应力及变形通解
|
Abstract:
本文根据正交异性板的力学性能,确定平面应力弹性力学的基本方程,利用复变函数方法求解含裂纹正交异性板的应力边值问题。采用I型裂纹作为典型实例,讨论了裂纹端部应力与变形的一般解法,推导出正交异性板的奇异应力和应变场,并得到裂纹张开位移与材料特性的关系。
The basic equation of elastic mechanics at plane stress state is determined by the mechanical characteristic of orthotropic plate. The stress boundary problem about the orthotropic plate with a crack is solved by using the complex function method. To take Mode I crack problem for the typical example, the general solution method is discussed for the stress and deformation near the crack-tip. And the singular stress and strain fields are derived for the orthotropic plate. The crack opening displacement is yet obtained to have a relation with the material characteristics.
[1] | 张行. 断裂与损伤力学[M]. 北京: 北京航空航天大学出版社, 2009. |
[2] | 郦正能, 张纪奎. 工程断裂力学[M]. 北京: 北京航空航天大学出版社, 2012. |
[3] | Sih, G.C. (1991) Mechanics of Fracture Initiation and Propagation. Kluwer Academic Publishers, The Netherlands.
https://doi.org/10.1007/978-94-011-3734-8 |
[4] | Friedrich, K. (1989) Application of Fracture Mechanics to Composite Materials. Elsevier Science Publisher, The Netherlands. |
[5] | 杨维阳, 李俊林, 张雪霞. 复合材料断裂复变方法[M]. 北京: 科学出版社, 2005. |
[6] | 李群, 欧卓成, 陈宜亨. 高等断裂力学[M]. 北京: 科学出版社, 2017. |
[7] | Jia, P.R., Suo, Y.Y., Jia, C. and Wang, Q. (2019) Stress Analysis of Orthotropic Wedge Loaded on the Apex. IOP Conference Series: Materials Science and Engineering, Vol. 585, Changsha, 17-18 May 2019, 448-453.
https://doi.org/10.1088/1757-899X/585/1/012069 |
[8] | Zhang, H. and Qiao, P.Z. (2019) A State-Based Peri-dynamic Model for Quantitative Elastic and Fracture Analysis of Orthotropic Materials. Engineering Fracture Mechanics, 206, 147-171.
https://doi.org/10.1016/j.engfracmech.2018.10.003 |