|
岩石类脆性材料细观本构模型参数反演方法研究进展
|
Abstract:
连续介质力学模型较难模拟岩石类脆性材料在破坏过程中出现的非连续特性,离散元方法为解决这类难题提供了新的途径。如何准确反演估计岩石类脆性材料细观本构模型参数,已经成为制约离散元方法工程应用的瓶颈之一。系统评述了岩石破坏过程细观数值模拟方法,介绍了岩石宏观本构模型参数反演方法研究进展,讨论了岩石细观本构模型及其参数反演方法。岩石材料细观本构模型参数反演研究为离散元模拟从定性分析到精确定量计算奠定基础,也是进行岩石类材料破坏机理多尺度研究的前提。
It is very difficult to simulate nonlinear characteristics of rock materials during fracturing process with continuum mechanics models. Discrete element methods supply for a new way for solving this kind of problems. However, how to precisely determine parameters of meso constitutive model of rock materials has become a key problem that affects the development and practical application of discrete element methods. Numerical simulation approaches for rock fracturing process are systematically reviewed. Estimating procedures for determining macro parameters of constitutive models of rock materials are introduced. Parameter inversion approaches of meso constitutive model for rock materials are discussed. The parameter inversion of meso constitutive model for rock materials can supply for foundations for precisely numerical simulation of discrete element methods and preconditions for multi-scale investigation of fracturing mechanism of rock materials.
[1] | Innaurato, N., Oggeri, C., Oreste, P.P. and Vinai, R. (2007) Experimental and Numerical Studies on Rock Breaking with TBM Tools under High Stress Confinement. Rock Mechanics and Rock Engineering, 40, 429-451.
https://doi.org/10.1007/s00603-006-0109-4 |
[2] | Zhu, W.C., Liu, J. and Tang, C.A. (2005) Simulation of Progres-sive Fracturing Processes around Underground Excavations under Biaxial Compression. Tunnelling and Underground Space Technology, 20, 231-247.
https://doi.org/10.1016/j.tust.2004.08.008 |
[3] | Molladavoodi, H. and Mortazavi, A. (2011) A Damage-Based Numerical Analysis of Brittle Rocks Failure Mechanism. Finite Elements in Analysis and Design, 47, 991-1003. https://doi.org/10.1016/j.finel.2011.03.015 |
[4] | Gong, Q.M., Zhao, J. and Jiao, Y.Y. (2005) Numerical Modeling of the Effects of Joint Orientation on Rock Fragmentation by TBM Cutters. Tunnelling and Underground Space Tech-nology, 20, 183-191.
https://doi.org/10.1016/j.tust.2004.08.006 |
[5] | Gong, Q.M., Jiao, Y.Y. and Zhao, J. (2006) Numerical Modeling of the Effects of Joint Spacing on Rock Fragmentation by TBM Cutters. Tunnelling and Underground Space Technology, 21, 46-55.
https://doi.org/10.1016/j.tust.2005.06.004 |
[6] | 于庆磊, 杨天鸿, 唐春安. 基于真实细观结构的准脆性材料三维建模及应用初探[J]. 计算力学学报, 2010, 27(5): 887-896. |
[7] | Harthong, B., Scholtès, L. and Donzé, F.-V. (2012) Strength Characterization of Rock Masses, Using a Coupled DEM-DFN Model. Geophysical Journal International, 191, 467-480. https://doi.org/10.1111/j.1365-246X.2012.05642.x |
[8] | Zhou, W.Y. and Yan, G.R. (1997) Fractal Analysis of Fracture Damage Propagation of Rock. Tsinghua Science and Technology, 2, 666-669. |
[9] | Ba?ant, Z.P. (2003) Microplane Constitutive Model for Porous Isotropic Rocks. International Journal for Numerical and Analytical Methods in Geomechanics, 27, 25-47. https://doi.org/10.1002/nag.261 |
[10] | Borodich, F.M. (1997) Some Fractal Models of Fracture. Journal of the Mechanics and Physics of Solids, 45, 239-259.
https://doi.org/10.1016/S0022-5096(96)00080-4 |
[11] | Zhao, Y.H. (1998) Crack Pattern Evolution and a Fractal Damage Constitutive Model for Rock. International Journal of Rock Mechanics and Mining Sciences, 35, 349-366. https://doi.org/10.1016/S0148-9062(97)00340-9 |
[12] | Jiang, Y.J., Tanabashi, Y. and Li, B. (2006) Influence of Geometrical Distribution of Rock Joints on Deformational Behavior of Underground Opening. Tunneling and Under-ground Space Technology, 21, 485-491.
https://doi.org/10.1016/j.tust.2005.10.004 |
[13] | Li, C.L., Prikry, R. and Nordlund, E. (1998) The Stress-Strain Behavior of Rock Material Related to Fracture under Compression. Engineering Geology, 49, 293-302. https://doi.org/10.1016/S0013-7952(97)00061-6 |
[14] | Tan, C.P., Zweiri, Y.H. and Althoefer, K. (2005) Online Soil Parameter Estimation Scheme Based on Newton-Raphson Method for Autonomous Excavation. IEEE/ASME Transactions on Mechatronics, 10, 221-229.
https://doi.org/10.1109/TMECH.2005.844706 |
[15] | Tafazoli, S., Lawrence, P.D. and Salcudean, S.E. (1999) Iden-tification of Inertial and Friction Parameters for Excavator Arms. IEEE Transactions on Robotics and Automation, 15, 966-971. https://doi.org/10.1109/70.795801 |
[16] | Zweiri, Y.H., Seneviratne, L.D. and Althoefer, K. (2004) Pa-rameter Estimation for Excavator Arm Using Generalized Newton Method. IEEE Transactions on Robotics, 20, 762-767. https://doi.org/10.1109/TRO.2004.829476 |
[17] | Zhao, Z.Y., Chow, T.L. and Rees, H.W. (2009) Predict Soil Texture Distributions Using an Artificial Neural Network Model. Computers and Electronics in Agriculture, 65, 36-48. https://doi.org/10.1016/j.compag.2008.07.008 |
[18] | Zhou, X.W., Xia, Y.M. and Xue, J. (2009) Neural Network Strata Identification Based on Tunneling Parameters of Shield Machine. International Conference on Intelligent Robotics and Applications, Singapore, 16-18 December 2009, Lecture Notes in Computer Science Vol. 5928, 392-401. https://doi.org/10.1007/978-3-642-10817-4_39 |
[19] | Provenzano, P. (2003) A Fuzzy-Neural Network Method for Modeling Uncertainties in Soil-Structure Interaction Problems. Computer-Aided Civil and Infrastructure Engineering, 18, 391-411.
https://doi.org/10.1111/1467-8667.00326 |
[20] | Bhattacharya, B. and Solomatine, D.P. (2006) Machine Learning in Soil Classification. Neural Networks, 19, 186-195.
https://doi.org/10.1016/j.neunet.2006.01.005 |
[21] | Kumar, J.K., Konno, M. and Yasuda, N. (2000) Subsurface Soil-Geology Interpolation Using Fuzzy Neural Network. Journal of Geotechnical and Geoenvironmental Engineering, 126, 632-639.
https://doi.org/10.1061/(ASCE)1090-0241(2000)126:7(632) |
[22] | Smith, L.N., German, R.M. and Smith, M.L. (2002) A Neural Network Approach for Solution of the Inverse Problem for Selection of Powder Metallurgy Materials. Journal of Materials Processing Technology, 120, 419-425.
https://doi.org/10.1016/S0924-0136(01)01198-0 |
[23] | Vladimir, M.K. and Helmut, S. (2003) Some Neural Net-work Applications in Environmental Sciences, Part I: Forward and Inverse Problems in Geophysical Remote Meas-urements. Neural Networks, 16, 321-334.
https://doi.org/10.1016/S0893-6080(03)00027-3 |
[24] | Vera, K. (2005) Neural Network Learning as an Inverse Problem. Logic Journal of the IGPL, 13, 551-559.
https://doi.org/10.1093/jigpal/jzi041 |
[25] | Wang, Z., Ulanowski, Z. and Kaye, P.H. (1999) On Solving the Inverse Scattering Problem with RBF Neural Networks: Noise-Free Case. Neural Computing & Applications, 8, 177-186. https://doi.org/10.1007/s005210050019 |
[26] | Sever, A. (2013) A Neural Network Algorithm to Pattern Recognition in Inverse Problems. Applied Mathematics and Computation, 221, 484-490. https://doi.org/10.1016/j.amc.2013.06.094 |
[27] | Guan, X.L. and Melchers, R.E. (2011) Effect of Response Surface Parameter Variation on Structural Reliability Estimates. Structural Safety, 23, 429-444. https://doi.org/10.1016/S0167-4730(02)00013-9 |
[28] | Saha, R., Upadhyaya, S.K. and Wallender, W.W. (2010) Inverse Solution of Soil-Water Transport Model Parameters Using Response Surface Methodology. Transactions of the ASABE, 53, 1137-1145.
https://doi.org/10.13031/2013.32603 |
[29] | Abusam, A., Keesman, K.J., van Straten, G., Spanjers, H. and Meinema, K. (2001) Parameter Estimation Procedure for Complex Non-Linear Systems: Calibration of ASM No. 1 for N-Removal in a Full-Scale Oxidation Ditch. Water Science and Technology, 43, 357-365. https://doi.org/10.2166/wst.2001.0445 |
[30] | Muthuvelayudham, R. and Viruthagiri, T. (2010) Application of Cen-tral Composite Design Based Response Surface Methodology in Parameter Optimization and on Cellulase Production Using Agricultural Waste. International Journal of Chemical and Biological Engineering, 3, 97-104. |
[31] | Kunamneni, A. and Kumar, K.S. (2005) Response Surface Methodological Approach to Optimize the Nutritional Parameters for Enhanced Production of -Amylase in Solid State Fermentation by Thermomyces lanuginosus. African Journal of Bio-technology, 4, 708-716. https://doi.org/10.5897/AJB2005.000-3138 |
[32] | Zheng, D.J., Cheng, L. and Bao, T.F. (2013) Integrated Parameter Inversion Analysis Method of a CFRD Based on Multi-Output Support Vector Machines and the Clonal Selection Algorithm. Computers and Geotechnics, 47, 68-77.
https://doi.org/10.1016/j.compgeo.2012.07.006 |
[33] | Belheine, N., Plassiard, J.P., Donzé, F.V., Darve, F. and Seridi, A. (2009) Numerical Simulation of Drained Triaxial Test Using 3D Discrete Element Modeling. Computers and Geotechnics, 36, 320-331.
https://doi.org/10.1016/j.compgeo.2008.02.003 |
[34] | Coetzee, C.J. and Els, D.N.J. (2009) Calibration of Discrete Element Parameters and the Modelling of Silo Discharge and Bucket Filling. Computers and Electronics in Agriculture, 65, 198-212.
https://doi.org/10.1016/j.compag.2008.10.002 |
[35] | Sazzad, M.M. and Islam, M.S. (2008) Macro and Me-so-Mechanical Responses of Granular Material under Varying Interparticle Friction. Journal of Civil Engineering, 36, 87-96. |
[36] | Zhang, Q., Zhu, H., Zhang, L. and Ding, X. (2011) Study of Scale Effect on Intact Rock Strength Using Particle Flow Modeling. International Journal of Rock Mechanics and Mining Sciences, 48, 1320-1328.
https://doi.org/10.1016/j.ijrmms.2011.09.016 |
[37] | Lisjak, A. and Grasselli, G. (2014) A Review of Discrete Modeling Techniques for Fracturing Processes in Discontinuous Rock Masses. Journal of Rock Mechanics and Ge-otechnical Engineering, 6, 3014-314.
https://doi.org/10.1016/j.jrmge.2013.12.007 |
[38] | Heok, E. and Martin, C.D. (2014) Fracture Initiation and Prop-agation in Intact Rock: A Review. Journal of Rock Mechanics and Geotechnical Engineering, 6, 287-300. https://doi.org/10.1016/j.jrmge.2014.06.001 |
[39] | Potyondy, D.O. and Cundall, P.A. (2004) A Bonded-Particle Model for Rock. International Journal of Rock Mechanical & Mining Sciences, 41, 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011 |
[40] | Psakhie, S.G., Shilko, E.V., Grigoriev, A.S., Astafurov, S.V. and Dimaki, A.V. (2014) A Mathematical Model of Particle-Particle Interaction for Discrete Element Based Modeling of Deformation and Fracture of Heterogeneous Elastic-Plastic Materials. Engineering Fracture Mechanics, 130, 96-115.
https://doi.org/10.1016/j.engfracmech.2014.04.034 |
[41] | Azevedo, N.M., Lemos, J.V. and Almeida, J.R. (2008) Influence of Aggregate Deformation and Contact Behavior on Discrete Particle Modeling of Fracture of Concrete. En-gineering Fracture Mechanics, 75, 1569-1586.
https://doi.org/10.1016/j.engfracmech.2007.06.008 |
[42] | Gu, X.L., Li, H., Wang, Z.L. and Lin, F. (2013) A Modi-fied Rigid-Body-Spring Concrete Model for Prediction of Initial Defects and Aggregates Distribution Effect on Behavior of Concrete. Computational Materials Science, 77, 355-365. https://doi.org/10.1016/j.commatsci.2013.04.050 |
[43] | James, P.M., Ford, M. and Jivkov, A.P. (2014) A Novel Particle Failure Criterion for Cleavage Fracture Modeling Allowing Measured Brittle Particle Distributions. Engineering Fracture Mechanics, 121-122, 98-115.
https://doi.org/10.1016/j.engfracmech.2014.03.005 |
[44] | Gray, G.G., Morgan, J.K. and Sanz, P.F. (2014) Overview of Continuum and Particle Dynamics Methods for Mechanical Modeling of Contractional Geologic Structures. Journal of Structural Geology, 59, 19-36.
https://doi.org/10.1016/j.jsg.2013.11.009 |
[45] | Shmulevich, I., Asaf, Z. and Rubinstein, D. (2007) Interaction be-tween Soil and a Wide Cutting Blade Using the Discrete Element Method. Soil& Tillage Research, 97, 37-50. https://doi.org/10.1016/j.still.2007.08.009 |
[46] | Ono, I., Nakashima, H., Shimizu, H., Miyasaka, J. and Ohdoi, K. (2013) Investigation of Elemental Shape for 3D DEM Modeling of Interaction between Soil and a Narrow Cutting Tool. Journal of Terramechanics, 50, 265-276.
https://doi.org/10.1016/j.jterra.2013.09.001 |
[47] | Ucgul, M., Fielke, J.M. and Saunders, C. (2014) Three-Dimensional Discrete Element Modeling of Tillage: Determination of a Suitable Contact Model and Parameters for a Cohesionless Soil. Biosystems Engineering, 121, 105-117.
https://doi.org/10.1016/j.biosystemseng.2014.02.005 |
[48] | Alizadeh, E., Bertrand, F. and Chaouki, J. (2013) De-velopment of a Granular Normal Contact Force Model Based on a Non-Newtonian Liquid Filled Dashpot. Powder Technology, 237, 202-212.
https://doi.org/10.1016/j.powtec.2013.01.027 |
[49] | Arena, A., Piane, C.D. and Sarout, J. (2014) A New Computa-tional Approach to Cracks Quantification from 2D Image Analysis: Application to Micro-Cracks Description in Rocks. Computers & Geoscience, 66, 106-120.
https://doi.org/10.1016/j.cageo.2014.01.007 |
[50] | Mak, J., Chen, Y. and Sadek, M.A. (2012) Determining Param-eters of a Discrete Element Model for Soil-Tool Interaction. Soil& Tillage Research, 118, 117-122. https://doi.org/10.1016/j.still.2011.10.019 |
[51] | Asaf, Z., Rubinstein, D. and Shmulevich, I. (2007) Determination of Discrete Element Model Parameters Required for Soil Tillage. Soil& Tillage Research, 92, 227-242. https://doi.org/10.1016/j.still.2006.03.006 |
[52] | Li, S.J., Wang, Z.Y. and Yu, S. (2019) Estimating Micro-Property Parameters of Concrete Materials Based on Macro-Experimental Data. IOP Conference Series: Earth and Environmental Science, 351, Article ID: 012027.
https://doi.org/10.1088/1755-1315/351/1/012027 |
[53] | Kirsch, A. (1996) An Introduction to the Mathematical Theory of Inverse Problem. Springer-Verlag, Berlin.
https://doi.org/10.1007/978-1-4612-5338-9 |
[54] | 王志云, 李守巨. 混凝土细观本构模型参数反演的估计方法[J]. 黑龙江科技大学学报, 2019, 29(2): 225-261. |
[55] | 傅磊, 李小军, 陈苏. 基于经验参考场地的广义线性反演方法[J]. 地震工程学报, 2019, 41(5): 1290-1298. |
[56] | 周立, 林强, 范涛. 基于三维应变格林函数反演中小震震源机制[J]. 地震工程学报, 2019, 41(6): 1533-1559. |
[57] | 范二平, 薛明喜, 赵欢欢. 三维地震神经网络反演在探明煤层富水灾害层的应用[J]. 地震工程学报, 2018, 40(4): 859-866. |