全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

加性噪声中未知分量数的谐波恢复方法研究
Research on Harmonic Retrieval Method in Additive Noise without Components Number

DOI: 10.12677/OE.2020.102005, PP. 38-45

Keywords: 谐波恢复,加性噪声,MUSIC算法,谐波分量数
Harmonic Retrieval
, Additive Noise, MUSIC Algorithm, Number of Harmonic Components

Full-Text   Cite this paper   Add to My Lib

Abstract:

谐波恢复问题是信号处理中的经典问题,对于被加性噪声污染的谐波信号,现有的多重信号分类(MUSIC)方法可以实现良好的恢复效果,但在谐波分量数未知的情况下无法发挥其超分辨率性能。本文结合实值MUSIC算法的超分辨率和逐步LSE算法的逐步估计的特点,提出了一种逐步MUSIC算法,该算法在分量数已知的情况下具有良好的估计性能。在分量数未知的情况下,我们利用该算法估计出一个模型集,并采用BIC准则估计谐波分量数。最后通过仿真实验对所提方法的性能进行了验证。
The retrieval of harmonic signal is a classic problem in signal processing. Consider harmonic signals in additive noise, among the proposed schemes in related literatures, the MUSIC (Multiple Signal Classification) algorithm can achieve good retrieval performance. However, it can’t play its super-resolution performance when the number of harmonic components is unknown. In this paper, we combine the super-resolution of real-value MUSIC algorithm and the step-by-step estimation of step-by-step LSE algorithm, a step-by-step MUSIC algorithm is proposed. Our algorithm has good estimation performance when the number of components is known. When the number of components is unknown, we use the algorithm to estimate a model set, and estimate the number of harmonic components with the Bayesian Information Criterion (BIC). Finally, the performance of the proposed method is verified by simulation experiments.

References

[1]  田野, 史佳欣, 王彦茹. 增益相位误差下基于部分校准嵌套阵列的DOA估计[J]. 电子学报, 2019, 47(12): 2465-2471.
[2]  桂宇风, 饶伟. 基于张量分解的二维互质矢量传感器阵列信号处理[J]. 南昌工程学院学报, 2019, 38(4): 83-91.
[3]  吕晨杰, 王斌, 王开勋. 采用图像处理的跳频信号参数盲估计[J]. 电讯技术, 2015, 55(8): 842-847.
[4]  Zhang, X. and Liang, Y. (1995) Prefiltering-Based ESPRIT for Estimating Sinusoidal Parameters in Non-Gaussian ARMA Noise. IEEE Transactions on Signal Processing, 43, 349-353.
https://doi.org/10.1109/78.365327
[5]  Zhang, X., Liang, Y. and Li, Y. (1994) A Hybrid Approach to Harmonic Retrieval in Non-Gaussian ARMA Noise. IEEE Transactions on Information Theory, 40, 1220-1226.
https://doi.org/10.1109/18.335951
[6]  Roy, R., Paulraj, A. and Kailath, T. (1986) ESPRIT—A Subspace Rotation Approach to Estimation of Parameters of Cisoids in Noise. IEEE Transactions on Acoustics Speech and Signal Processing, 34, 1340-1342.
https://doi.org/10.1109/TASSP.1986.1164935
[7]  Schmidt, R.O. (1986) Multiple Emitter Location and Signal Parameter Estimation. IEEE Transactions on Antennas and Propagation, 34, 276-280.
https://doi.org/10.1109/TAP.1986.1143830
[8]  Swami, A. and Mendel, J.M. (1991) Cumulant-Based Approach to Harmonic Retrieval and Related Problems. IEEE Transactions on Signal Processing, 39, 1099-1109.
https://doi.org/10.1109/78.80965
[9]  Shi, Z. and Fairman, F.W. (1994) Harmonic Retrieval via State Space and Fourth-Order Cumulants. IEEE Transactions on Signal Processing, 42, 1109-1119.
https://doi.org/10.1109/78.295207
[10]  Zhang, Y. and Wang, S. (2000) Harmonic Retrieval in Colored Non-Gaussian Noise Using Cumulants. IEEE Transactions on Signal Processing, 48, 982-987.
https://doi.org/10.1109/78.827532
[11]  Prasad, A., Kundu, D. and Mitra, A. (2008) Sequential Estimation of the Sum of Sinusoidal Model Parameters. Journal of Statistical Planning and Inference, 138, 1297-1313.
https://doi.org/10.1016/j.jspi.2007.04.024
[12]  蔡涛, 段善旭, 刘方锐. 基于实值MUSIC算法的电力谐波分析方法[J]. 电工技术学报, 2009, 24(12): 149-155.
[13]  田园, 张曙. 未知信源数目的MUSIC算法研究[J]. 信息技术, 2006, 30(6): 116-118.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133