全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类带有Dirichlet边界条件的分数阶对流弥散方程解的多重性
Multiple Solutions for a Class of Fractional Advection-Dispersion Equation with Dirichlet Boundary Conditions

DOI: 10.12677/AAM.2020.96112, PP. 947-958

Keywords: 分数阶对流弥散方程,耦合系统,变分方法,多重解
Fractional Advection-Dispersion Equation
, Coupled System, Variational Methods, Multiple Solutions

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了带有Dirichlet边界条件的分数阶对流弥散方程耦合系统的多解问题。基于变分方法和一个三临界点定理,我们得到了该分数阶系统至少有三个解的结果。
This article concerns multiple solutions for a coupled system of fractional advection-dispersion equation with Dirichlet boundary conditions. Using variational methods and a three-critical point theorem, we obtain that the fractional system has at least three solutions.

References

[1]  Ahmad, B., Ntouyas, S.K. and Alsaedi, A. (2016) On a Coupled System of Fractional Differential Equations with Coupled Nonlocal and Integral Boundary Conditions. Chaos Solitons Fractals, 83, 234-241.
https://doi.org/10.1016/j.chaos.2015.12.014
[2]  Peng, L. and Zhou, Y. (2015) Bifurcation from Interval and Positive Solutions of the Three-Point Boundary Value Problem for Fractional Differential Equations. Applied Mathematics and Computation, 257, 458-466.
https://doi.org/10.1016/j.amc.2014.11.092
[3]  Jia, M. and Liu, X. (2014) Multiplicity of Solutions for Integral Boundary Value Problems of Fractional Differential Equations with Upper and Lower Solutions. Applied Mathematics and Computation, 232, 313-323.
https://doi.org/10.1016/j.amc.2014.01.073
[4]  Zhang, S. (2011) Existence of ASolution for the Fractional Differential Equation with Nonlinear Boundary Conditions. Computational &Applied Mathematics, 61, 1202-1208.
https://doi.org/10.1016/j.camwa.2010.12.071
[5]  Ferrara, M. and Hadjian, A. (2015) Variational Approach to Fractional Boundary Value Problems with Two Control Parameters. Electronic Journal of Differential Equations, 2015, 1-15.
[6]  Rodríguez-López, R. and Tersian, S. (2014) Multiple Solutions to Boundary Value Problem for Impulsive Fractional Differential Equations. Fractional Calculus & Applied Analysis, 17, 1016-1038.
https://doi.org/10.2478/s13540-014-0212-2
[7]  Hu, Z., Liu, W. and Chen, T. (2016) The Existence of a Ground State Solution for a Class of Fractional Differential Equation with p-Laplacian Operator. Boundary Value Problem, 2016, 1-12.
https://doi.org/10.1186/s13661-016-0557-z
[8]  Zhao, Y. and Tang, L. (2017) Multiplicity Results for Impulsive Fractional Differential Equations with p-Laplacian via Variational Methods. Boundary Value Problem, 2017, 1-15.
https://doi.org/10.1186/s13661-017-0855-0
[9]  Zhao, Y., Chen, H. and Zhang, Q. (2015) Infinitely Many Solutions for Fractional Differential System via Variational Method. Journal of Applied Mathematics and Computation, 50, 589-609.
https://doi.org/10.1007/s12190-015-0886-6
[10]  Li, D., Chen, F. and An, Y. (2018) Existence and Multiplicity of Nontrivial Solutions for Nonlinear Fractional Differential Systems with p-Laplacian via Critical Point Theory. Mathematical Methods in the Applied Sciences, 41, 3197-3212.
https://doi.org/10.1002/mma.4810
[11]  Jiao, F. and Zhou, Y. (2011) Existence of Solutions for a Class of Fractional Boundary Value Problems via Critical Point Theory. Computers & Mathematics with Applications, 62, 1181-1199.
https://doi.org/10.1016/j.camwa.2011.03.086
[12]  Zeidler, E. (1985) Nonlinear Functional Analysis and Its Applications. Vol. II, Springer, Berlin-Heidelberg-New York.
https://doi.org/10.1007/978-1-4612-5020-3
[13]  Bonanno, G. and Marano, S.A. (2010) On the Structure of the Critical Set of Non-Differentiable Functions with a Weak Compactness Condition. Applicable Analysis, 89, 1-10.
https://doi.org/10.1080/00036810903397438
[14]  Mawhin, J. and Willem, M. (1989) Critical Point Theory and Hamiltonian Systems. Springer, Berlin.
https://doi.org/10.1007/978-1-4757-2061-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133