全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大顶苦瓜种质资源的形态分类及分子鉴定
Morphological Classification and Molecular Identification of Germplasm Resources in Momordica charantia L.

DOI: 10.12677/BR.2020.94042, PP. 341-353

Keywords: 大顶苦瓜,种质资源,形态分类,分子标记
Dading Bitter Gourd (Momordica charantia L.)
, Germplasm Resouces, Morphological Classification, Molecular Marker

Full-Text   Cite this paper   Add to My Lib

Abstract:

结合形态学标记和分子标记技术,为综合分析大顶苦瓜种质资源遗传多样性提供解决方案。根据苦瓜形态学描述规范对供试大顶苦瓜进行形态学指标的变异和聚类分析,并采用SRAP和SSR分子标记技术进行聚类分析。结果发现,33个形态学指标中叶形的变异系数最大,其次是种皮色。结瓜习性、叶色、瓜形、单瓜重、单瓜种子数、商品瓜纵径的变异系数均大于25%,而裂片数、花柄遁形苞叶、性型、瓜面光泽、近瓜蒂端面形状和种瓜皮色等6个指标的变异系数为0,在遗传距离为18处,所有苦瓜材料被分为3大组群。采用25对SRAP引物扩增共获得282条多态性条带,在遗传相似系数阈值约0.66处可将供试材料分为4个类群;20对SSR引物扩增共获得多态性条带有58条,在遗传相似系数阈值0.64处可将大顶苦瓜供试材料分为4个类群。两种分子标记的聚类结果相似性达到92.86%,综合两种分子标记的聚类结果与SSR标记基本相同。形态标记和分子标记的聚类相似度达到78.57%。采用形态学标记结合分子标记技术综合分析大顶苦瓜种质资源的遗传多样性可靠度较高,两种分子标记的分析结果一致度非度高。种质的地理分布和第一雌花节位是大顶苦瓜种质分类中非常重要的依据,瓜形、单瓜重、种皮色、叶形等性状也很重要。
Combined with morphological markers and molecular markers, a solution is provided for comprehensive analysis of genetic diversity of Dading bitter gourd resources. According to the morphological description standard of Momordica charantia, the variation and cluster analysis of the morphological indexes of Dading bitter gourd were carried out. And the cluster analysis was carried out based on SRAP and SSR molecular marker technology. The results showed that, among the 33 morphological indexes, the variation coefficient of leaf shape is the largest, followed by the seed skin color. The variation coefficients of melon habit, leaf color, leaf shape, single melon weight, number of seeds per melon and longitudinal diameter of commercial melon were more than 25%. However, the coefficient of variation of six indexes, such as lobes count, sexual type, hide subtending leaf of flower stalk, melon surface gloss, end face shape of proximal melon pedicel and species melon skin color, was 0. At the threshold of genetic distance of 18, all bitter gourd materials were divided into three groups. A total of 282 polymorphic bands were amplified by 25 pairs of SRAP primers, and the tested materials could be divided into 4 groups at the threshold of genetic similarity coefficient of about 0.66. A total of 58 polymorphic bands were amplified by 20 pairs of SSR primers, and at the threshold of 0.64, the tested materials of Dading bitter gourd could be divided into four groups. The similarity of the clustering results of the two markers was 92.86%, and the comprehensive clustering result based on the two markers was basically the same as those of SSR markers. The clustering similarity between morphological markers and molecular markers reached 78.57%. It is more reliable in analysing the genetic diversity of Dading bitter gourd germplasm resources than the analysis with single methodology, and the results of the two molecular markers were highly consistent with each other. The geographical distribution of germplasm and

References

[1]  浙江农业大学. 蔬菜栽培学各论(南方本) [M]. 北京: 中国农业出版社, 1985.
[2]  Lucas, E.A., Dumancas, G.G. and Smith, B.J. (2010) Health Benefits of Bitter Melon (Momordica charantia). Bioactive Foods in Promoting Health, 35, 525-549.
https://doi.org/10.1016/B978-0-12-374628-3.00035-9
[3]  万新建, 李作善, 缪南生, 等. 苦瓜种质资源的研究与利用[J]. 现代园艺, 2009(8): 29-31.
[4]  徐润生, 吕业成, 孔国添, 等. 地方特色谭边大顶苦瓜[J]. 蔬菜, 2006(5): 10-11.
[5]  郭文场, 于艳, 张亚兰, 等. 苦瓜的利用价值[J]. 特种经济动植物, 2001(3): 38.
[6]  张长远, 罗少波, 胡开林, 等. 长身苦瓜品种资源聚类分析[J]. 广东农业科学, 2003(4): 20-21, 26.
[7]  李志勇, 谢华锋, 张力, 等. DNA分子标记技术在农作物品种鉴定上的应用[J]. 种子科技, 2010(10): 19-20.
[8]  文方德, 李卓杰, 傅家瑞. 种子纯度鉴定技术进展及其评论[J]. 种子, 1995(5): 36-38.
[9]  方宣钧, 吴为人, 唐纪良. 作物DNA标记辅助育种[M]. 北京: 科学出版社, 2001: 1-84.
[10]  张长远, 孙妮, 胡开林. 苦瓜品种亲缘关系的RAPD分析[J]. 分子植物育种, 2005(4): 515-519.
[11]  王国莉, 黄梅花. 应用SSR和SRAP分析苦瓜育种新组合的亲缘关系[J]. 分子植物育种, 2015, 13(9): 1993-2000.
[12]  李光光, 郑岩松, 李向阳, 等. 利用SSR分子标记研究苦瓜资源的遗传多样性[J]. 南方农业学报, 2013, 44(1): 6-11.
[13]  张景云, 黄月琴, 万新建, 等. 基于SSR和SRAP标记苦瓜种质遗传多样性分析[J]. 上海交通大学学报: 农业科学版, 2017, 35(3): 90-94.
[14]  米军红, 尚小红, 周生茂, 等. 苦瓜抗白粉病SRAP标记筛选的PCR体系优化与验证[J]. 南方农业学报, 2013, 44(6): 898-902.
[15]  邓俭英, 王绪, 方锋学, 等. 不同性别类型苦瓜基因组DNA提取及RAPD标记初步研究[J]. 广西农业科学; 2007, 2(3): 223-226.
[16]  王国莉, 陈勇智, 冉梦莲, 等. 苦瓜性别相关SSR和SRAP分子标记的筛选及分析[J]. 分子植物育种, 2016, 14(7): 1764-1771.
[17]  王国莉, 徐毓璇, 黄梅花. 基于SSR和SRAP标记的苦瓜品种鉴定及亲缘关系分析[J]. 分子植物育种, 2016, 14(2): 501-510.
[18]  Wang, S.Z. (2010) Development and Characterization of Polymorphic Microsatellite Markers in Momordica Chrantia. American Journal of Botany, 97, e75-e78.
https://doi.org/10.3732/ajb.1000153
[19]  Li, G. and Quiros, C.F. (2001) Sequence-Related Amplifiled Polymorphism (SRAP), a New Marker System Based on a Simple PCR Reaction its Application to Mapping and Gene Tagging Brassiea. Theoretical and Applied Genetics, 103, 55-61.
https://doi.org/10.1007/s001220100570
[20]  赵秀娟, 宋建文, 胡开林. 苦瓜遗传多样性的SRAP标记分析[J]. 植物遗传资源学报, 2013, 14(1): 78-84.
[21]  沈镝, 李锡香. 苦瓜种质资源描述规范和数据标准[M]. 北京: 中国农业出版社, 2008.
[22]  向长萍, 谢军, 聂启军, 等. 23个苦瓜品种(系)农艺性状的主成分分析[J]. 华中农业大学学报, 2001, 20(4): 378-381.
[23]  陈禅友, 兰红, 李亚木, 等. 苦瓜种质资源ISSR遗传多态性分析[J]. 长江蔬菜, 2012(12): 19-22.
[24]  高山, 林碧英, 许端祥, 等. 苦瓜种质遗传多样性的RAPD和ISSR分析[J]. 植物遗传资源学报, 2010, 11(1): 78-83.
[25]  王燕龙, 姜言生, 曲志才, 等. SSR分子标记在作物种质资源鉴定中的应用[J]. 山东农业科学, 2012, 44(10): 11-18.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133