全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中国不同产地薤白ITS、rps16和trnL-F序列分析及亲缘关系分析
ITS, rps16 and trnL-F Sequence Analysis and Genetic Relationships of Alliummacrostemon from Different Regions in China

DOI: 10.12677/BR.2020.94039, PP. 320-327

Keywords: 薤白,ITS,rps16,trnL-F,亲缘关系
Allium macrostemon Bunge
, ITS, rps16, trnL-F, Relationship

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文为探讨不同产地薤白(Allium macrostemon Bunge)的亲缘关系,以40个来自我国不同产地的薤白为材料,分别以ITS、rps16及trnL-F序列进行扩增并测序,分析其序列特征及亲缘关系。结果显示:我国不同产地薤白ITS序列平均长度为590 bp,G + C平均含量为50.64%;rps16序列平均长度为587 bp,G + C平均含量为29.66%;trnL-F序列平均长度为622 bp,G + C平均含量为38.16%。基于ITS + rps16 + trnL-F联合序列构的最大简约法(maximum parsimony, MP)和贝叶斯(Bayesian inference, BI)系统发育树均表明,薤白为一单系种,总体可划分为位于西南地区的A组、沿海地区的B组和北方及东北的C组。研究表明,亲缘关系较近的居群,地理位置也较近,说明ITS + rps16 + trnL-F联合序列可用于不同产地薤白的亲缘关系研究中,可以提供亲缘关系图谱,为薤白资源的开发、保护、利用及育种提供一定的科学资料。
40 Allium macrostemon Bunge individuals from different regions in China were used as materials to explore the genetic relationship. Their sequences of ITS, rps16 and trnL-F were amplified and sequenced respectively, and their sequence characteristics and genetic relationship were analyzed. Results showed that the average length of ITS, rps16 and trnL-F sequences was 590 bp, 587 bp and 622 bp respectively; the average content of G + C was 50.64%, 29.66% and 38.16% respectively. Based on ITS + rps16 + trnL-F sequence structure, the maximum parsimony (MP) and Bayesian inference (BI) phylogenetic trees show that A. macrostemon is a monophyletic species, which can be generally divided into A group in Southwest China, B group in coastal area and C group in North and Northeast China. Research suggested that the populations with close genetic relationships and geographical location were also close, which indicated that ITS + rps16 + trnL-F sequence could be used in the study of genetic relationship of A. macrostemon from different habitats. Based on ITS + rps16 + trnL-F sequence of A. macrostemon, resources from different habitats to construct phylogenetic tree could provide the genetic map and some scientific data for the development, protection, utilization and breeding of A. macrostemon resources.

References

[1]  熊朝勇, 陈霞. 药食同源野生蔬菜小根蒜研究进展[J]. 现代食品, 2019(20): 103-105.
[2]  任梦云, 杜乐山, 陈彦君, 张盾, 沈奇, 关潇, 张银东. 锁阳ITS序列遗传多样性分析[J]. 植物学报, 2018, 53(3): 313-321.
[3]  宋荣, 宋静爽, 欧立军, 严蓓, 周佳民, 朱校奇, 易自立. 不同地区多花黄精的 ITS 序列分析及近缘种聚类分析[EB/OL].
http://kns.cnki.net/kcms/detail/46.1068.S.20191216.1111.004.html, 2020-06-05.
[4]  Downie, S.R. and Katz-Downie, D.S. (1999) Phylogenetic Analysis of Chloroplast rps16 Intron Sequences Reveals Relationships within the Woody Southern African Apiaceae Subfamily Apioideae. Canadian Journal of Botany, 77, 1120-1135.
https://doi.org/10.1139/b99-086
[5]  胡颖, 王茜, 张新新, 等. 叶绿体DNA标记在谱系地理学中的应用研究进展[J]. 生物多样性, 2019, 27(2): 219-234.
[6]  章秋平, 马小雪, 魏潇, 刘威生, 董文轩, 刘宁, 张玉萍, 徐铭, 刘硕, 张玉君. 基于叶绿体DNA序列trnL-F分析李亚属植物的系统发育关系[J]. 果树学报, 2017, 34(10): 1249-1257.
[7]  黄德青, 李琴琴, 周颂东, 何兴金. 基于nrDNA ITS和cpDNA trnL-F序列探讨薤白的系统地位[J]. 植物分类与资源学报, 2015, 37(5): 537-545.
[8]  莫忠妹, 成宇, 石甜, 赵财. 基于ITS序列西南地区不同居群薤白亲缘关系及其地理分布格局研究[J]. 西北植物学报, 2019, 39(9): 1573-1580.
[9]  Wendel, J.F., Schnabel, A. and Seelanan, T. (1995) Bidirectional Interlocus Concerted Evolution Following Allopolyploid Speciation in Cotton (Gossypium). Proceedings of the National Academy of Sciences of the United States of America, 92, 280-284.
https://doi.org/10.1073/pnas.92.1.280
[10]  Oxelman, B., Magnus, L. and Berglund, D. (1997) Chloroplast rps16 Intron Phylogeny of the tribe Sileneae (Caryophyllaceae). Plant Systematics and Evolution, 206, 393-410.
https://doi.org/10.1007/BF00987959
[11]  Taberlet, P., Gielly, L., Pautou, G. and Bouvet, J. (1991) Universal Primers for Amplification of Three Non-Coding Regions of Chloroplast DNA. Plant Molecular Biology, 17, 1105-1109.
https://doi.org/10.1007/BF00037152
[12]  Burland, T.G. (2000) DNASTAR’s Lasergene Sequence Analysis Software. Methods in Molecular Biology, 132, 71-91.
https://doi.org/10.1385/1-59259-192-2:71
[13]  Sudhir, K., Glen, S. and Koichiro, T. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870-1874.
https://doi.org/10.1093/molbev/msw054
[14]  Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011) MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28, 2731-2739.
https://doi.org/10.1093/molbev/msr121
[15]  赵海光, 周建建, 曹珊珊, 郑玉红, 单宇, 夏冰. 基于ITS和trnL-F序列碱基差异的繁缕及其近缘种的亲缘关系分析[J]. 植物资源与环境学报, 2009, 18(1): 1-5.
[16]  陈仁芳, 张泽, 唐洲, 余茂德, 徐立, 王茜玲. 桑属ITS、trnL-F、rps16序列与进化分析[J]. 中国农业科学, 2011, 44(8): 1553-1561.
[17]  唐萍, 彭程. 叶绿体基因组进化的速率和方式[J]. 生物学通报, 2010, 45(6): 8-10.
[18]  Chen, J.M., Zhao, S.Y., Liao, Y.Y., Gichira, A.W., Gituru, R.W. and Wang, Q.F. (2015) Chloroplast DNA Phylogeographic Analysis Reveals Significant Spatial Genetic Structure of the Relictual Tree Davidia involucrata (Davidiaceae). Conservation Genetics, 16, 583-593.
https://doi.org/10.1007/s10592-014-0683-z
[19]  王谈笑, 郑伟, 陈菁, 王炜, 徐晓丹. 基于ITS序列分析钩苞大丁草九个居群的亲缘关系[J]. 广西植物, 2017, 37(3): 329-334.
[20]  腰政懋, 徐程扬, 李乐. 不同种源辽东冷杉rDNA ITS序列及其亲缘关系[J]. 东北林业大学学报, 2015, 43(10): 6-9, 13.
[21]  袁娟娟, 叶瑱, 卜文俊. 欧亚大陆广布物种的谱系地理研究:现状与发展趋势[J]. 中国科学: 生命科学, 2019, 49(9): 1155-1164.
[22]  金建华, 廖文波, 王伯荪, 彭少麟. 新生代全球变化与中国古植物区系的演变[J]. 广西植物, 2003, 23(3): 217-225.
[23]  萧家仪, 商志远, 舒强, 尹建吉, 吴小爽. 中国南方内陆山地末次冰盛期植被特征及古环境意义[J]. 中国科学: 地球科学, 2018, 48(5): 651-660.
[24]  张晓芸. 青藏高原及邻近地区河谷植物小蓝雪花的谱系地理学研究[D]: [硕士学位论文]. 昆明: 云南师范大学生命科学学院, 2017.
[25]  冯建孟, 朱有勇. 滇西北地区种子植物地理分布及区系分化[J]. 西北植物学报, 2009, 29(11): 2312-2317.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133