|
肠道菌群在自身免疫性肝病中的治疗进展
|
Abstract:
已经有研究证明肠道菌群失调可以导致人体多器官多系统病变,肠道微生物以其组成上的多样性、结构上的复杂性来维持稳态,调节人体生理机能和病理状态。免疫系统是人体一个重要的防御系统,影响因素众多,其中肠道菌群在维持人体免疫系统稳态的过程中发挥重要作用。因此建立和维持肠道菌群与免疫系统之间的和谐关系是保障机体健康的关键。近年来不少研究提出肠道菌群在自身免疫性肝病的发生发展中起到了重要作用,激起了广大学者的研究热情,因此人们开始探索通过调节肠道菌群来治疗自身免疫性肝病并取得了确切的疗效。本文就通过调节肠道菌群治疗自身免疫性肝病的进展做一综述。
Studies have shown that disorders of intestinal flora can lead to diseases of multiple organs and systems in the human body. Intestinal microorganisms maintain homeostasis and regulate physi-ological function and pathological state of human body with their diversity in composition and complexity in structure. Immune system is an important defense system of human body, and there are many influencing factors, among which intestinal flora plays an important role in maintaining the homeostasis of human immune system. Therefore, establishing and maintaining a harmonious relationship between the intestinal flora and the immune system is the key to ensure the health of the body. In recent years, many studies have suggested that intestinal flora plays an important role in the development of autoimmune liver disease, which has aroused the enthusiasm of many scholars, therefore, people began to explore the treatment of autoimmune liver disease by regu-lating intestinal flora and achieved a definite effect. This article reviews the progress of treating autoimmune liver disease by regulating intestinal flora.
[1] | Qin, J., Li, R., Raes, J., et al. (2010) A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature, 464, 59-65. https://doi.org/10.1038/nature08821 |
[2] | Deschasaux, M., Bouter, K.E., Prodan, A., et al. (2018) Depicting the Composition of Gut Microbiota in a Population with Varied Ethnic Origins But Shared Geography. Nature Medicine, 24, 1526-1531. https://doi.org/10.1038/s41591-018-0160-1 |
[3] | Zhang, C., Zhang, M., Wang, S., et al. (2010) Interactions be-tween Gut Microbiota, Host Genetics and Diet Relevant to Development of Metabolic Syndromes in Mice. The ISME Journal, 4, 232-241. https://doi.org/10.1038/ismej.2009.112 |
[4] | Madan, J.C., Hoen, A.G., Lundgren, S.N., et al. (2016) Association of Cesarean Delivery and Formula Supplementation with the Intestinal Microbiome of 6-Week-Old Infants. JAMA Pe-diatrics, 170, 212-219. https://doi.org/10.1001/jamapediatrics.2015.3732 |
[5] | Paolella, G. (2014) Gut-Liver Axis and Probiotics: Their Role in Non-Alcoholic Fatty Liver Disease. World Journal of Gastroenterology, 20, 15518-15531. https://doi.org/10.3748/wjg.v20.i42.15518 |
[6] | Chang, C., Lin, C., Lu, C., et al. (2015) Ganodermalucidum Re-duces Obesity in Mice by Modulating the Composition of the Gut Microbiota. Nature Communications, 6, 7489. https://doi.org/10.1038/ncomms8489 |
[7] | Brahe, L.K., Astrup, A. and Larsen, L.H. (2016) Can We Prevent Obe-sity-Related Metabolic Diseases by Dietary Modulation of the Gut Microbiota? Advances in Nutrition, 7, 90-101. https://doi.org/10.3945/an.115.010587 |
[8] | Sonnenburg, J.L. and B?ckhed, F. (2016) Diet-Microbiota Interactions as Moderators of Human Metabolism. Nature, 535, 56-64. https://doi.org/10.1038/nature18846 |
[9] | Herrema, H., IJzerman, R.G. and Nieuwdorp, M. (2017) Emerging Role of Intestinal Microbiota and Microbial Metabolites in Metabolic Control. Diabetologia, 60, 613-617. https://doi.org/10.1007/s00125-016-4192-0 |
[10] | Cotillard, A., Kennedy, S.P., Kong, L.C., et al. (2013) Dietary Intervention Impact on Gut Microbial Gene Richness. Nature, 500, 585-588. https://doi.org/10.1038/nature12480 |
[11] | Kamada, N., Seo, S.U., Chen, G.Y., et al. (2013) Role of the Gut Microbiota in Immunity and Inflammatory Disease. Nature Reviews Immunology, 13, 321-335. https://doi.org/10.1038/nri3430 |
[12] | Bajaj, J.S., Hylemon, P.B. and Younossi, Z. (2012) The Intestinal Microbiota and Liver Disease. American Journal of Gastroenterology Supplements, 1, 9-14. |
[13] | Boursier, J., Mueller, O., Barret, M., et al. (2016) The Severity of Nonalcoholic Fatty Liver Disease Is Associated with Gut Dysbiosis and Shift in the Metabolic Function of the Gut Microbiota. Hepatology, 63, 764-775. https://doi.org/10.1002/hep.28356 |
[14] | Xie, G., Wang, X., Liu, P., et al. (2016) Distinctly Altered Gut Microbiota in the Progression of Liver Disease. Oncotarget, 7, 19355-19366. https://doi.org/10.18632/oncotarget.8466 |
[15] | Li, F., Sun, G., Wang, Z., et al. (2018) Characteristics of Fecal Microbiota in Non-Alcoholic Fatty Liver Disease Patients. Science China Life Sciences, 61, 770-778. https://doi.org/10.1007/s11427-017-9303-9 |
[16] | Yin, X., Peng, J., Zhao, L., et al. (2013) Structural Changes of Gut Microbiota in a Rat Non-Alcoholic Fatty Liver Disease Model Treated with a Chinese Herbal Formula. Systematic and Applied Microbiology, 36, 188-196. https://doi.org/10.1016/j.syapm.2012.12.009 |
[17] | Lynch, S.V. and Pedersen, O. (2016) The Human Intestinal Microbiome in Health and Disease. The New England Journal of Medicine, 375, 2369-2379. https://doi.org/10.1056/NEJMra1600266 |
[18] | Li, B., Selmi, C., Tang, R., et al. (2018) The Microbiome and Au-toimmunity: A Paradigm from the Gut-Liver Axis. Cellular & Molecular Immunology, 15, 595-609. https://doi.org/10.1038/cmi.2018.7 |
[19] | Marshall, J.C. (1998) The Gut as a Potential Trigger of Exercise-Induced Inflammatory Responses. Canadian Journal of Physiology and Pharmacology, 76, 479-484. https://doi.org/10.1139/y98-049 |
[20] | 陈成伟, 陈晓宇, 成军. 自身免疫性肝炎诊断和治疗共识(2015)[J]. 国际消化病杂志, 2016, 21(1): 165-178. |
[21] | Peiseler, M., Liebscher, T., Sebode, M., et al. (2018) Efficacy and Limitations of Budesonide as a Second-Line Treatment for Patients with Autoimmune Hepatitis. Clinical Gastroenterology and Hepatology, 16, 260-267. https://doi.org/10.1016/j.cgh.2016.12.040 |
[22] | 林睿. 肠黏膜屏障损伤对自身免疫性肝炎患者枯否细胞免疫调节功能影响的研究[D]: [博士学位论文]. 天津: 天津医科大学, 2013. |
[23] | 王禾穗源, 杨成茂, 郭倩, 等. 肠道菌群对于CONA诱导的自身免疫性肝炎的影响[C]//第八届泛环渤海生物化学与分子生物学会2018年学术交流会, 2018: 115. |
[24] | 李谦谦, 周新苗, 祁兴顺, 等. 《2018年英国胃肠病学会/英国PBC协作组原发性胆汁性胆管炎治疗及管理指南》推荐意见[J]. 临床肝胆病杂志, 2018, 34(6): 1191-1192. |
[25] | Fiorucci, S. and Distrutti, E. (2015) Bile Acid-Activated Receptors, Intestinal Microbiota, and the Treatment of Metabolic Disorders. Trends in Molecular Medicine, 21, 702-714. https://doi.org/10.1016/j.molmed.2015.09.001 |
[26] | Chiang, J.Y.L., Kimmel, R., Wein-berger, C., et al. (2000) Farnesoid X Receptor Responds to Bile Acids and Represses Cholesterol 7α-Hydroxylase Gene (CYP7A1) Transcription. Journal of Biological Chemistry, 275, 10918-10924. https://doi.org/10.1074/jbc.275.15.10918 |
[27] | Gadaleta, R.M., van Erpecum, K.J., Oldenburg, B., et al. (2011) Farnesoid X Receptor Activation Inhibits Inflammation and Preserves the Intestinal Barrier in Inflammatory Bowel Disease. Gut, 60, 463-472. https://doi.org/10.1136/gut.2010.212159 |
[28] | Swann, J.R., Want, E.J., Geier, F.M., et al. (2011) Systemic Gut Microbial Modulation of Bile Acid Metabolism in Host Tissue Compartments. Proceedings of the National Academy of Sciences, 108, 4523-4530. https://doi.org/10.1073/pnas.1006734107 |
[29] | Tang, R., Wei, Y., Li, Y., et al. (2018) Gut Microbial Profile Is Altered in Primary Biliary Cholangitis and Partially Restored after UDCA Therapy. Gut, 67, 534-541. https://doi.org/10.1136/gutjnl-2016-313332 |
[30] | 中华医学会肝病学分会, 中华医学会消化病学分会, 中华医学会感染病学分会. 原发性硬化性胆管炎诊断和治疗专家共识(2015)[J]. 临床肝胆病杂志, 2016, 32(1): 23-31. |
[31] | Lazaridis, K.N. and LaRusso, N.F. (2016) Primary Sclerosing Cholangitis. The New England Journal of Medicine, 375, 1161-1170. https://doi.org/10.1056/NEJMra1506330 |
[32] | Pereira, P., Aho, V., Arola, J., et al. (2017) Bile Microbiota in Primary Sclerosing Cholangitis: Impact on Disease Progression and Development of Biliary Dysplasia. PLoS ONE, 12, e182924. https://doi.org/10.1371/journal.pone.0182924 |
[33] | Tabibian, J.H., Hara, S.P.O., Trussoni, C.E., et al. (2016) Ab-sence of the Intestinal Microbiota Exacerbates Hepatobiliary Disease in a Murine Model of Primary Sclerosing Chol-angitis. Hepatology, 63, 185-196. https://doi.org/10.1002/hep.27927 |
[34] | de Vrieze, J. (2013) The Promise of Poop. Science, 341, 954-957. https://doi.org/10.1126/science.341.6149.954 |
[35] | Hamilton, M.J., Weingarden, A.R., Unno, T., et al. (2013) High-Throughput DNA Sequence Analysis Reveals Stable Engraftment of Gut Microbiota Following Transplantation of Previously Frozen Fecal Bacteria. Gut Microbes, 4, 125-135. https://doi.org/10.4161/gmic.23571 |
[36] | Allegretti, J.R., Kassam, Z., Carrellas, M., et al. (2019) Fecal Microbiota Transplantation in Patients with Primary Sclerosing Cholangitis. The American Journal of Gastroenterology, 114, 1071-1079. https://doi.org/10.14309/ajg.0000000000000317 |
[37] | Philips, C.A., Augustine, P. and Phadke, N. (2018) Healthy Donor Fecal Microbiota Transplantation for Recurrent Bacterial Cholangitis in Primary Sclerosing Cholangitis—A Single Case Report. Journal of Clinical and Translational Hepatology, 6, 438-441. https://doi.org/10.14218/JCTH.2018.00033 |