全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于低频特征信号的高温热浪特征分析
High-Temperature Heat Wave Characteristic Analysis Based on Low-Frequency Characteristic Signal

DOI: 10.12677/AG.2020.106045, PP. 479-487

Keywords: 低频信号,西南区域,高温热浪
Low Frequency Signal
, Southwest Region, High Temperature Heat Wave

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了进一步研究低频信号对西南地区高温天气过程的影响,基于国家气象信息中心提供的1979年~2015年间我国地面站点逐日最高气温数据,通过天气学诊断分析方法以及谱分析法,对西南区域发生的高温天气过程与低频信号的联系进行研究分析。结果表明:1) 西南地区6~8月逐日最高气温具有显著的周期为10~30 d、30~80 d的低频振荡特征。提取10~30 d、30~80 d的低频分量,可以看出最高气温10~30 d以及30~80 d的低频振荡,尤其是峰谷值相位的变化与实际气温的变化有很高的相似度,能够很好地反映持续性强、弱气温变化的交替演变过程。2) 西南地区高温热浪过程与10~30 d、30~80 d的低频信号有关,且10~30天的信号贡献最为显著。3) 观察发生高温热浪时,低频环流场的形势,可以发现,10~30 d与30~80 d的环流皆有贡献,10~30 d与30~80 d两种环流的低频信号跟中高纬以及低纬的振荡信号有关,对于预报西南地区的高温过程具有重要作用。
In order to further study the impact of low-frequency signals on the high-temperature weather process in the southwest region, based on the daily maximum temperature data of China’s ground stations from 1979 to 2015 provided by the National Meteorological Information Center, through weather diagnostic analysis methods and spectral analysis methods, research and analysis of the relationship between high temperature weather process and low frequency signal. The results show that: 1) The daily maximum temperature from June to August in the southwest region has significant low-frequency oscillation characteristics with periods of 10 - 30 d and 30 - 80 d. Extracting the low frequency components of 10-30d and 30 - 80 d, it can be seen that the low temperature oscillations of the maximum temperature of 10 - 30 d and 30 - 80 d, especially the change of the peak-valley phase and the actual temperature change have a high degree of similarity, it can well reflect the alternating evolution of the continuous strong and weak temperature changes. 2) The high-temperature heat wave process in the southwest is related to the low-frequency signals of 10 - 30 d and 30 - 80 d, and the signal contribution of 10 - 30 days is the most significant. 3) Observing the situation of the low-frequency circulation field when high-temp- erature heat waves occur, it can be found that the circulations of 10 - 30 d and 30 - 80 d both contribute, and the low-frequency signals of the two circulations of 10 - 30 d and 30 - 80 d are related to the mid-high latitude and low latitude oscillation signals. The latitude oscillation signal is related to the prediction of high temperature processes in the southwest region.

References

[1]  周玉昆. 温室效应及全球变暖趋势[J]. 环境导报, 1990(5): 8-10.
[2]  孙立勇, 任军, 徐锁兆. 热浪对炎热地区居民死亡率的影响[J]. 气象, 1994, 20(9): 54-57.
[3]  李威, 蔡锦辉, 郭艳君. 2009年全球重大天气气候事件概述[J]. 气象, 2010, 36(4): 106-110.
[4]  叶殿秀, 尹继福, 陈正洪, 等, 1961~2010年我国夏季高温热浪的时空变化特征[J]. 气候变化研究进展, 2013, 9(1): 15-20.
[5]  Hu, L., Huang, G. and Qu, X. (2017) Spatial and Temporal Features of Summer Extreme Temperature over China during 1960-2013. Theoretical and Applied Climatology, 128, 821-833.
https://doi.org/10.1007/s00704-016-1741-x
[6]  丁一汇, 戴晓苏. 中国近百年来的温度变化[J]. 气象, 1994, 20(12): 19-26.
[7]  马振锋, 彭骏. 近40年西南地区的气候变化事实[J]. 高原气象, 2006, 25(4): 633-637.
[8]  周长春, 汪丽, 郭善云, 等. 四川盆地高温热浪时空特征及预报模型研究[J]. 高原山地气象研究, 2014, 34(3): 51-57.
[9]  唐秋艳, 佟铃, 寇思聪, 等. 本溪市高温天气特征分析预报[J]. 农业灾害研究, 2019, 9(2): 63-64.
[10]  郭瑞玲, 潘巧英, 梁建辉, 等. 2018年5月佛山市持续性高温天气成因初探[J]. 广东气象, 2019, 41(2): 1-4.
[11]  孙国武, 冯建英, 陈伯民, 等. 大气低频振荡在延伸期预报中的应用[J]. 气象科技进展, 2012, 2(1): 12-18.
[12]  Huynen, M., Martens, P., Schram, D., et al. (2001) The Impact of Heat Waves and Cold Spells on Mortality Rates in the Dutch Population. Environmental Health Perspectives, 109, 463-470.
https://doi.org/10.1289/ehp.01109463
[13]  徐栋夫, 李栋梁, 王慧. 我国西南地区秋季干湿分类及主要类型异常年环流特征分析[J]. 大气科学, 2014, 38(2): 373-385
[14]  周长艳, 张顺谦, 齐冬梅, 等. 近50年四川高温变化特征及其影响[J]. 高原气象, 2013, 32(6): 1720-1728.
[15]  江玉华, 程炳岩, 邓承之, 等. 重庆市严重伏旱气候特征分析[J]. 高原山地气象研究, 2009, 29(1): 31-38.
[16]  苏永玲, 张旭煜, 袁媛, 等. 2006年西南地区异常高温及其成因分析[J]. 成都信息工程学院学报, 2007, 22(Z1): 16-22.
[17]  杨秋明. 长江下游夏季低频温度和高温天气的延伸期预报研究[J]. 地球科学进展, 2018, 33(4): 385-395.
[18]  黄卓, 陈辉, 田华. 高温热浪指标研究[J]. 气象, 2011, 37(3): 345-351.
[19]  覃卫坚, 黄大慰, 廖雪萍. 南宁市云量变化特征及其与气温、降水的关系分析[J]. 气象研究与应用, 2007, 28(4): 14-19.
[20]  覃志年, 何慧, 况雪源. 广西季气温、降水量异常频次的时空分布特征[J]. 气象研究与应用, 2007, 28(2): 27-30.
[21]  Xu, Y., Gao, X.J., Shen, Y., Xu, C.H., Shi, Y. and Giorgi, F. (2009) A Daily Temperature Dataset over China and Its Application in Validating a RCM Simulation. Advances in Atmospheric Sciences, 26, 763-772.
https://doi.org/10.1007/s00376-009-9029-z
[22]  吴佳, 高学杰. 一套格点化的中国区域逐日观测资料及与其他资料的对比[J]. 地球物理学报, 2013, 56(4): 1102-1111.
[23]  杞明辉, 李贵福. 用功率谱分析昆明地区6~9月气象要素场的振荡周期[J]. 云南大学学报, 1990, 12(3): 272-275.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133