全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

本征O空位缺陷对ZnO表面甲醛吸附性质影响的密度泛函理论研究
Effect of Intrinsic O Vacancy Defects on the Adsorption Properties of Formaldehyde on ZnO Surface: A Density Functional Theory Study

DOI: 10.12677/APP.2020.106042, PP. 313-320

Keywords: 密度泛函理论,ZnO,O空位缺陷,气体吸附
Density Functional Theory
, ZnO, O Vacancy Defects, Gas Adsorption

Full-Text   Cite this paper   Add to My Lib

Abstract:

甲醛因其来源广泛、危害大,而受到社会各界的极大关注,研制一种高效快捷的甲醛检测传感器迫在眉睫。本文通过密度泛函理论方法,研究了甲醛在本征O空位缺陷ZnO表面的吸附性质,结果表明,甲醛在缺陷ZnO表面发生了物理吸附,甲醛分子与ZnO的最近结合距离为2.123 ?,结合能为0.496 eV。同时,吸附过程中伴随着电子的转移,甲醛分子从缺陷ZnO中捕获电子0.055 e。进一步计算甲醛吸附前后的总体态密度变化,发现甲醛吸附使带隙中产生了杂质能级,改变了O空位缺陷ZnO的电导性质,从而产生甲醛敏感信号。该研究期望为基于ZnO薄膜的甲醛气体传感器的研究提供理论参考。
Formaldehyde has attracted great attention due to its wide source and serious harm. Hence, it is urgent to develop an efficient and sensitive formaldehyde detection sensor. In this article, adsorp-tion behavior of formaldehyde on the surface of ZnO with O vacancy defects was investigated via density functional theory (DFT) method. The calculation results revealed that the adsorption be-tween formaldehyde molecule and ZnO was physical. The binding distance and the binding energy between formaldehyde molecules and ZnO are 2.123 ? and 0.496 eV respectively. Meanwhile, ad-sorption induced electron migration from ZnO to formaldehyde. The formaldehyde molecules trapped electrons from the defective ZnO by 0.055 e. Calculation of the variety of the density of states before and after formaldehyde adsorption was conducted and it is demonstrated that the adsorption of formaldehyde produced impurity levels in the interstitial band and affected the conductance of defective ZnO, thus generating formaldehyde sensitive signal. This study is expected to provide theoretical reference for the research of formaldehyde gas sensor based on ZnO film.

References

[1]  崔连喜, 李利荣, 吴宇峰, 等. 液相色谱法测定土壤和沉积物中15种醛酮类化合物[J]. 理化检验: 化学分册, 2018, 54(4): 117-120.
[2]  李娜. 甲醛的毒理学研究进展[J]. 职业卫生与应急救援, 2009, 27(6): 309-311.
[3]  Wang, J., Liu, L., Cong, S.Y., et al. (2008) An Enrichment Method to Detect Low Concentration Formaldehyde. Sensors & Actuators B Chemical, 134, 1010-1015.
https://doi.org/10.1016/j.snb.2008.07.010
[4]  Rai, P., Kim, Y.S., Song, H.M., et al. (2012) The Role of Gold Catalyst on the Sensing Behavior of ZnO Nanorods for CO and NO2 Gases. Sensors & Actuators B, 165, 133-142.
https://doi.org/10.1016/j.snb.2012.02.030
[5]  Fabbri, B., Gaiardo, A., Giberti, A., et al. (2016) Chemoresistive Properties of Photo-Activated Thin and Thick ZnO Films. Sensors and Actuators B: Chemical, 222, 1251-1256.
https://doi.org/10.1016/j.snb.2015.06.048
[6]  An, W., Wu, X. and Zeng, X.C. (2008) Adsorption of O2, H2, CO, NH3, and NO2 on ZnO Nanotube: A Density Functional Theory Study. Journal of Physical Chemistry C, 112, 5747-5755.
https://doi.org/10.1021/jp711105d
[7]  Hosseini, Z.S., Zad, A.I. and Mortezaali, A. (2015) Room Temperature H2S Gas Sensor Based on Rather Aligned ZnO Nanorods with Flower-Like Structures. Sensors & Actuators B Chemical, 207, 865-871.
https://doi.org/10.1016/j.snb.2014.10.085
[8]  Dey, A. (2018) Semiconductor Metal Oxide Gas Sensors: A Review. Materials Science and Engineering, 229, 206-217.
https://doi.org/10.1016/j.mseb.2017.12.036
[9]  Lupan, O., Cretu, V., Postica, V., et al. (2016) Silver-Doped Zinc Oxide Single Nanowire Multifunctional Nanosensor with a Significant Enhancement in Response. Sensors & Actuators B, 223, 893-903.
https://doi.org/10.1016/j.snb.2015.10.002
[10]  Chang, X., Peng, M., Yang, J., et al. (2015) A Miniature Room Temperature Formaldehyde Sensor with High Sensitivity and Selectivity Using CdSO4 Modified ZnO Nanoparticles. RSC Advances, 5, 75098-75104.
https://doi.org/10.1039/C5RA13459E
[11]  Chen, D., Liu, Y. and Yuan, Y.J. (2020) Investigation of Formaldehyde Adsorption on ZnO (0001) Surface by Density Functional Theory. Russian Journal of Physical Chemistry, 94, 423-428.
https://doi.org/10.1134/S0036024420020089
[12]  Delley, B. (1998) A Scattering Theoretic Approach to Scalar Relativistic Corrections on Bonding. International Journal of Quantum Chemistry, 69, 423-433.
https://doi.org/10.1002/(SICI)1097-461X(1998)69:3<423::AID-QUA19>3.0.CO;2-2
[13]  Perdew, J., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868.
https://doi.org/10.1103/PhysRevLett.77.3865
[14]  Delley, B. (1990) An All Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules. Journal of Chemical Physics, 92, 508-517.
https://doi.org/10.1063/1.458452
[15]  Tran, H.T.T. and Spencer, M.J.S. (2017) Zinc Oxide for Gas Sensing of Formaldehyde: Density Functional Theory Modelling of the Effect of Nanostructure Morphology and Gas Concentration on the Chemisorption Reaction. Materials Chemistry & Physics, 193, 274-284.
https://doi.org/10.1016/j.matchemphys.2017.02.031
[16]  Zhang, X., Dai, Z., Chen, Q., et al. (2014) A DFT Study of SO2 and H2S Gas Adsorption on Au-Doped Single-Walled Carbon Nanotubes. Physica Scripta, 89, Article ID: 065803.
https://doi.org/10.1088/0031-8949/89/6/065803
[17]  Chen, D. and Yuan, Y.J. (2017) Formaldehyde Adsorption on Carbon Nanotubes Fragment by Density Functional Theory. International Journal of Modern Physics B, 31, Article ID: 1744074.
https://doi.org/10.1142/S021797921744074X
[18]  Hadipour, N.L., Ahmadi Peyghan, A. and Soleymanabadi, H. (2015) Theoretical Study on the Al-Doped ZnO Nanoclusters for CO Chemical Sensors. Journal of Physical Chemistry C, 119, 6398-6404.
https://doi.org/10.1021/jp513019z

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133