全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有临时免疫的分布时滞SIRS流行病模型
SIRS Epidemic Model with Temporary Immunity and Distributed Delay

DOI: 10.12677/PM.2020.106071, PP. 585-592

Keywords: 随机SIRS流行病模型,灭绝,分布时滞,临时免疫
Stochastic SIRS Epidemic Model
, Extinction, Distributed Delay, Temporary Immunity

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了一种具有临时免疫的随机分布时滞SIRS流行病模型。通过构造合适的李雅普诺夫函数,得到了系统正解的存在性和唯一性。还得到了疾病灭绝的充分条件并给出了阈值。
In this paper, we study an epidemic model of random distributed delay SIRS with temporary im-munity. By constructing proper lyapunov functions, the existence and uniqueness of positive solu-tions are obtained. Sufficient conditions for the extinction of the disease are also obtained and thresholds are given.

References

[1]  Buonomo, B., D’Onofrio, A. and Lacitignola, D. (2008) Global Stability of an SIR Epidemic Model with Information Dependent Vaccination. Mathematical Biosciences, 216, 9-16.
https://doi.org/10.1016/j.mbs.2008.07.011
[2]  Korobeinikov, A. and Wake, G.C. (2002) Lyapunov Functions and Global Stability for SIR, SIRS, and SIS Epidemiological Models. Applied Mathematics Letters, 15, 955-960.
https://doi.org/10.1016/S0893-9659(02)00069-1
[3]  Korobeinikov, A. (2006) Lyapunov Functions and Global Stability for SIR and SIRS Epidemiological Models with Non-Linear Transmission. Bulletin of Mathematical Biology, 68, 615-626.
https://doi.org/10.1007/s11538-005-9037-9
[4]  Hethcote, H.W. and Driessche, P. (1995) An SIS Epidemic Model with Variable Population Size and a Delay. Journal of Mathematical Biology, 34, 177-194.
https://doi.org/10.1007/BF00178772
[5]  Beretta, E., Hara, T., Ma, W. and Takeuchi, Y. (2001) Global Asymp-totic Stability of an SIR Epidemic Model with Distributed Time Delay. Nonlinear Analysis: Theory, Methods & Appli-cations, 47, 4107-4115.
https://doi.org/10.1016/S0362-546X(01)00528-4
[6]  Brauer, F., Driessche, P.V.D. and Wang, L. (2008) Oscilla-tions in a Patchy Environment Disease Model. Mathematical Biosciences, 215, 1-10.
https://doi.org/10.1016/j.mbs.2008.05.001
[7]  Blyuss, K.B. and Kyrychko, Y.N. (2010) Stability and Bifurcations in an Epidemic Model with Varying Immunity Period. Bulletin of Mathematical Biology, 72, 490-505.
https://doi.org/10.1007/s11538-009-9458-y
[8]  Zhou, Y., Zhang, W. and Yuan, S. (2014) Survival and Stationary Distribution of a SIR Epidemic Model with Stochastic Perturbations. Applied Mathematics & Computation, 244, 118-131.
https://doi.org/10.1016/j.amc.2014.06.100
[9]  Lahrouz, A. and Settati, A. (2014) Necessary and Sufficient Condition for Extinction and Persistence of SIRS System with Random Perturbation. Applied Mathematics & Computation, 233, 10-19.
https://doi.org/10.1016/j.amc.2014.01.158
[10]  Ji, C. and Jiang, D. (2014) Threshold Behaviour of a Stochastic SIR Model. Applied Mathematical Modelling, 38, 5067-5079.
https://doi.org/10.1016/j.apm.2014.03.037
[11]  Liu, Q. and Chen, Q. (2015) Analysis of the Deterministic and Stochastic SIRS Epidemic Models with Nonlinear Incidence. Physica A: Statistical Mechanics & Its Applications, 428, 140-153.
https://doi.org/10.1016/j.physa.2015.01.075
[12]  Zhang, X.B., Huo, H.F., Xiang, H. and Meng, X.Y. (2014) Dy-namics of the Deterministic and Stochastic SIQS Epidemic Model with Non-Linear Incidence. Applied Mathematics & Computation, 243, 546-558.
https://doi.org/10.1016/j.amc.2014.05.136
[13]  Ji, C.Y., Jiang, D.Q. and Shi, N.Z. (2014) The Behavior of an SIR Epidemic Model with Stochastic Perturbation. Stochastic Analysis & Applications, 30, 755-773.
https://doi.org/10.1080/07362994.2012.684319
[14]  Roberts, M.G. and Saha, A.K. (1999) The Asymptotic Behaviout of a Logistic Epidemic Model with Stochastic Disease Transmission. Applied Mathematics Letters, 12, 37-41.
https://doi.org/10.1016/S0893-9659(98)00123-2
[15]  Khasminskii, R. (1980) Stochastic Stability of Differential Equations. Springer, Berlin.
[16]  Meng, X., Liu, R. and Zhang, T. (2016) Adaptive Dynamics for a Non-Autonomous Lotka-Volterra Model with Size- Selective Disturbance. Nonlinear Analysis: Real World Applications, 16, 202-213.
https://doi.org/10.1016/j.nonrwa.2013.09.019
[17]  Liu, M. and Fan, M. (2017) Permanence of Stochastic Lotka-Volterra Systems. Journal of Nonlinear Science, 27, 425-452.
https://doi.org/10.1007/s00332-016-9337-2
[18]  Ma, H. and Jia, Y. (2016) Stability Analysis for Stochastic Dif-ferential Equations with Infinite Markovian Switchings. Journal of Mathematical Analysis and Applications, 435, 593-605.
[19]  Zhang, B. (1976) Stochastic Differential Equations and Their Applications. 159-235.
[20]  Liu, L. and Meng, X. (2017) Optimal Harvesting Control and Dynamics of Two-Species Stochastic Model with Delays. Advances in Difference Equations, 2017, Article No. 18.
https://doi.org/10.1186/s13662-017-1077-6
[21]  Gray, A., Greenhalgh, D., Hu, L., Mao, X. and Pan, J. (2011) A Stochastic Differential Equation SIS Epidemic Model. SIAM Journal on Applied Mathematics, 71, 876-902.
https://doi.org/10.1137/10081856X
[22]  Mao, X., Marion, G. and Renshaw, E. (2002) Environmental Brownian Noise Suppresses Explosions in Population Dynamics. Stochastic Processes & Their Applications, 97, 95-110.
https://doi.org/10.1016/S0304-4149(01)00126-0
[23]  Tang, T., Teng, Z. and Li, Z. (2015) Threshold Behavior in a Class of Stochastic SIRS Epidemic Models with Nonlinear Incidence. Stochastic Analysis & Applications, 33, 994-1019.
https://doi.org/10.1080/07362994.2015.1065750

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133