全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于序贯概率的音波泄漏监测方法研究
Acoustic Wave Leakage Monitoring Method Based on Sequential Probability

DOI: 10.12677/JSTA.2020.83012, PP. 107-114

Keywords: 序贯概率比检验法,卡尔曼滤波器,音波法,微小泄漏监测
Sequential Probability Ratio Test
, Kalman Filter, Sound Wave Method, Micro Leakage Monitoring

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文将序贯概率比检验法应用到管道音波泄漏监测系统中,针对微弱泄漏信号特征,首先采用Kalman滤波法对监测数据进行动态滤波预处理;其次,在音波定位法的基础上运用序贯概率比检验法,判断边界阈值,提高了泄漏判断的准确性。实验结果表明了该方法的有效性和适用性。
In this paper, sequential probability ratio test is applied to acoustic pipeline leakage monitoring system. According to the characteristics of the small leakage, firstly, Kalman filter is used to preprocess the deformation monitoring data; secondly, sequential probability ratio test method is used on the basis of acoustic positioning method to improve the accuracy of leakage judgment through judging boundaries. The experimental results show the validity and applicability of this method.

References

[1]  中国国家统计局. 2015年中国统计年鉴[M]. 北京: 中国国家统计局, 2015: 8-11.
[2]  靳世久, 孙家, 姜弘彦, 等. 强环境噪声下地下管道泄漏检测[J]. 天津大学学报: 自然科学与工程技术版, 1994(6): 782-787.
[3]  王海伟. 音波测漏系统在输气管道的应用[J]. 管道技术与设备, 2014(2): 22-24.
[4]  Yang, G., Liu, Y., Wang, Y., et al. (2015) EMD Interval Thresholding Denoising Based on Similarity Measure to Select Relevant Modes. Signal Processing, 109, 95-109.
https://doi.org/10.1016/j.sigpro.2014.10.038
[5]  Wang, Z., Chang, J., Zhang, S., et al. (2015) An Im-proved Denoising Method in RDTS Based on Wavelet Transform Modulus Maxima. IEEE Sensors Journal, 15, 1061-1067.
https://doi.org/10.1109/JSEN.2014.2360559
[6]  Li, S., Wen, Y., Li, P., et al. (2014) Modal Analysis of Leakage-Induced Acoustic Vibrations in Different Directions for Leak Detection and Location in Fluid-Filled Pipelines. 2014 IEEE International Ultrasonics Symposium, Chicago, IL, 3-6 September 2014, 1412-1415.
https://doi.org/10.1109/ULTSYM.2014.0349
[7]  郭静波, 蔡雄, 胡铁华, 张志文, 油气管道中智能机器人跟踪定位关键技术综述[J]. 仪器仪表学报, 2015(36): 481-498.
[8]  魏明生, 童敏明, 訾斌, 唐守锋, 基于粒子群-拟牛顿混合算法的管道机器人定位[J]. 仪器仪表学报, 2012(33): 2594-2600.
[9]  郭晨城, 文玉梅, 李平, 等. 采用EMD的管道泄漏声信号增强[J]. 仪器仪表学报, 2015, 36(6): 1397-1405.
[10]  Demirci, S., Yigit, E., Eskidemir, I.H., et al. (2012) Ground Penetrating Radar Imaging of Water Leaks from Buried Pipes Based on Back-Projection Method. Ndt & E International, 47, 35-42.
https://doi.org/10.1016/j.ndteint.2011.12.008
[11]  孙洁娣, 肖启阳, 温江涛, 等. 局域均值分解分析的管道泄漏孔径识别及定位[J]. 仪器仪表学报, 2014, 35(12): 2835-2842.
[12]  贾沛璋, 朱征桃. 最优估计及其应用[M]. 北京: 科学出版社, 1984: 232-253.
[13]  Van Der Merwe, R. (2004) Sigma-Point Kalman Filters for Probabilistic Infer-ence in Dynamic State-Space Models. OGI School of Science & Engineering, Beaverton.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133