全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

土钉墙支护及基坑变形数值模拟——以长沙中建梅溪湖项目为例
Numerical Simulation of Soil Nailing Wall Support and Foundation Pit Deformation—Taking the Foundation Pit Support of Meixi Lake Project of Changsha Zhongjian as an Example

DOI: 10.12677/HJCE.2020.97068, PP. 644-660

Keywords: 基坑支护,土钉墙支护,变形,位移
Foundation Pit Support
, Soil Nailing Wall Support, Deformation, Displacement

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文以长沙中建梅溪一号(3B地块)基坑工程为例,通过前期的地质调查、多方案论证,确定了初步的土钉墙支护结构和放坡挂网素喷的基坑支护方案,应用FLAC3D对支护方案模拟,模拟分析了采用土钉墙支护条件下,基坑开挖过程中基坑土体的变形及位移情况,并与现场监测数据做了对比。数值模拟结果显示当开挖到基坑底部时,基坑中上部水平位移值达到最大,剖面一为27.01 mm、剖面二26.46 mm、剖面三为28.16 mm。分别为基坑开挖深度的3.4‰、4.4‰、3.5‰,符合规范要求。开挖统一深度时,随着距离基坑边缘距离的增加,水平位移逐渐减小;沿着基坑垂直方向由上向下看,水平位移线增大达到最大之后再减小。三个剖面的最大水平位移都没有超过设计值的8 cm。所以说明理论设计的基坑形状、支护参数合理可靠。每个剖面前几步开挖后,监测点的沉降曲线形状相似,最后一步开挖后形状变化明显。剖面2和剖面3在基坑边缘基坑开挖前三、四步没有沉降,反而出现了上升的现象,但是在基坑开挖结束后,基坑边缘附近还是表现出沉降的趋势。剖面1基坑表面各测点表现出一直沉降,开挖的前四步随着距离基坑的距离增加沉降量逐渐减小,第五步开挖稳定后基坑边缘附近沉降变缓慢,而在距基坑边缘2 m左右沉降量达到最大;三个剖面最终的沉降曲线形状基本相同,类似于“勺子”状;三个剖面的最大沉降量分别为10.64 mm、3.4 mm、11.25 mm,为开挖深度的1.33‰、0.56‰、1.4‰,符合规范要求。基坑最大沉降值距离基坑边缘2 m左右。沉降量较小对周围建筑物和公路影响较小。
In this paper, taking the foundation pit project of No. 1 Meixi (block 3b) of Changsha Zhongjian as an example, through the preliminary geological investigation and multi scheme argumentation, the preliminary soil nailing wall supporting structure and the foundation pit supporting scheme of sloping hanging net and plain spraying are determined. The FLAC3D is used to simulate the supporting scheme, and the deformation and displacement of the foundation pit soil during the excavation under the condition of adopting soil nailing wall are analyzed The field monitoring data are compared. The numerical simulation results show that when the excavation reaches the bottom of the foundation pit, the horizontal displacement value of the middle and upper part of the foundation pit reaches the maximum, Section 1 is 27.01 mm, Section 2 is 26.46mm and Section 3 is 28.16 mm. They are 3.4‰, 4.4‰, 3.5‰ of the excavation depth of the foundation pit respectively, which meet the requirements of the specification. When excavating a uniform depth, the horizontal displacement decreases gradually with the increase of distance from the edge of the foundation pit; when looking from the top to the bottom along the vertical direction of the foundation pit, the horizontal displacement line increases to the maximum and then decreases. The maximum horizontal displacement of the three sections did not exceed 8 cm of the design value. Therefore, the shape of foundation pit and supporting parameters designed by theory are reasonable and reliable. After the first several steps of excavation of each section, the shape of the settlement curve of the monitoring point is similar, and after the last step of excavation, the shape changes obviously. Section 2 and Section 3 did not settle in the three or four steps before the excavation of the foundation pit edge, but increased. However, after the

References

[1]  黄曙光. 复杂周边环境基坑工程变形控制技术[J]. 岩土工程学报, 2013(S1): 474-477.
[2]  李进军, 王卫东, 邸国恩, 等. 基坑工程对临近建筑物附加变形影响的分析[J]. 岩土力学, 2007, 28(S1): 623-629.
[3]  徐中华, 王卫东. 深基坑变形控制指标研究[J]. 地下空间与工程学报, 2010, 6(3): 619-626.
[4]  张大祥, 傅长军. 土钉墙技术在深基坑边坡支护中的应用研究——以南京某商业用楼基坑为例[J]. 江苏科技信息, 2019, 36(33): 49-51.
[5]  杨继红, 丁鹏, 杨兴隆. 深基坑开挖过程中土钉支护结构的变形与受力特性分析[J]. 水利与建筑工程学报, 2019, 17(6): 133-136.
[6]  程良奎, 陈肇元. 岩土加固实用技术[M]. 北京: 地震出版社, 1994.
[7]  Bruce, D.A. and Jewell, R.A. (1986) Soil Nailing: Application and Practice I. Ground Engineering, 19, 356-365.
[8]  李校兵, 王军, 郑国栋. 土钉支护基坑的变形监测与数值模拟[J]. 铁道建筑, 2008(11): 60-62.
[9]  何德海. 某基坑支护方案设计及施工数值模拟研究[J]. 城市住宅, 2019, 26(5): 148-151.
[10]  连芸, 鲁玉芬, 吴立坤. 复合土钉墙在某基坑工程中的应用研究[J]. 安徽水利水电职业技术学院学报, 2018, 18(4): 25-27+35.
[11]  Sherif, A., Ibrahim, W.W., et al. (2006) Fatigue of Corrugated-Web Plate Girders: Analytical Study. Journal of Structural Engineering, 132, 1381-1392.
https://doi.org/10.1061/(ASCE)0733-9445(2006)132:9(1381)
[12]  Sause, R., et al. (2006) Fatigue Life of Girders with Trapezoidal Corrugated Webs. Journal of Structural Engineering, 132, 1070-1078.
https://doi.org/10.1061/(ASCE)0733-9445(2006)132:7(1070)
[13]  季玉海. 复合土钉支护的面层设计方法与应用[J]. 铁道建筑技术, 2009(3): 57-62.
[14]  孙玉琢, 刘福臣, 成英昌, 等. 基坑土钉支护设计计算问题探讨[J]. 港工技术, 2009, 46(3): 49-51.
[15]  孙林娜, 徐福宾. 水泥土墙复合土钉墙的协同作用机理数值模拟[J]. 华侨大学学报(自然科学版), 2020, 41(3): 314-322.
[16]  薛丽影, 杨文生, 李荣年. 深基坑工程事故原因的分析与探讨[J]. 岩土工程学报, 2013, 35(S1): 468-473.
[17]  梁潇文, 张福龙. 兰州地区土钉墙支护受力研究[J]. 中国锰业, 2017, 35(3): 190-192.
[18]  刘波, 韩彦辉. FLAC原理、实例与应用指南[M]. 北京: 人民交通出社, 2005.
[19]  李晶晶, 程祖锋, 耿立立, 等. 基于FLAC3D的复合土钉支护数值模拟分析[J]. 河北工程大学学报(自然科学版), 2011, 28(3): 5-8.
[20]  杨学林. 基坑工程设计、施工和监测中应关注的若干问题[J]. 岩石力学与工程学报, 2012(11): 2327-2333.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133