全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Bioprocess  2019 

治疗绿脓感染的新策略
New Therapeutic Strategies to Counter PA

DOI: 10.12677/BP.2019.93003, PP. 13-27

Keywords: 细菌耐药性,生物膜,新一代测序技术,绿脓杆菌,群体感染
Antimicrobial Resistance
, Biofilm, Next-Generation Sequencing Technology, Pseudomonas aeruginosa, Quorum Sensing

Full-Text   Cite this paper   Add to My Lib

Abstract:

受群体效应系统调控。数种新的治疗策略如以生物膜的形成和群体效应系统为靶标正在研发当中,还有噬菌体以及免疫治疗随之孕育而生。随着下一代测序技术和比较基因组学的发展,将给我们设计更为安全有效的药物指引新的思路,使得我们治疗绿脓感染的选择方案发生革命性的变化。
Pseudomonas aeruginosa
(PA) is a kind of highly infectious opportunistic pathogen with innate multi-drug resistance and has ability to acquire drug resistance mechanisms furthermore. In chronic infections, PA forms biofilms to reduce the effectiveness of antibiotics, while secreting a range of virulence factors, many of which are regulated by the population effect system. Several new therapeutic targets such as biological membrane formation and group response systems are being developed, as well as phages and immunotherapy. With the development of next-generation sequencing technology and comparative genomics, we will be able to design new ideas for safer and more effective drugs, which will revolutionize our choice of treatment for PA infection.

References

[1]  Stover, C.K., et al. (2000) Complete Genome Sequence of Pseudomonas aeruginosa PAO1, an Opportunistic Pathogen. Nature, 406, 959-964.
https://doi.org/10.1038/35023079
[2]  Wong, S., et al. (2000) Recalls of Foods and Cos-metics Due to Microbial Contamination Reported to the U.S. Food and Drug Administration. Journal of Food Protec-tion, 63, 1113-1116.
https://doi.org/10.4315/0362-028X-63.8.1113
[3]  Carson, L.A., et al. (1972) Factors Af-fecting Comparative Resistance of Naturally Occurring and Subcultured Pseudomonas aeruginosa to Disinfectants. Ap-plied Microbiology, 23, 863-869.
https://doi.org/10.1128/AEM.23.5.863-869.1972
[4]  Rahme, L.G., et al. (1995) Common Virulence Factors for Bacterial Pathogenicity in Plants and Animals. Science, 268, 1899-1902.
https://doi.org/10.1126/science.7604262
[5]  Strateva, T., Y.D. (2009) Pseudomonas aeruginosa—A Phenome-non of Bacterial Resistance. Journal of Medical Microbiology, 58, 1133-1148.
https://doi.org/10.1099/jmm.0.009142-0
[6]  van Delden, C. (2007) Pseudomonas aeruginosa Bloodstream In-fections: How Should We Treat Them? International Journal of Antimicrobial Agents, 30, S71-S75.
https://doi.org/10.1016/j.ijantimicag.2007.06.015
[7]  Wisplinghoff, H., et al. (2004) Nosocomial Bloodstream Infections in US Hospitals: Analysis of 24,179 Cases from a Prospective Nationwide Surveillance Study. Clinical Infec-tious Diseases, 39, 309-317.
https://doi.org/10.1086/421946
[8]  Page, M.G. and Heim, J. (2009) Prospects for the Next Anti-Pseudomonas Drug. Current Opinion in Pharmacology, 9, 558-565.
https://doi.org/10.1016/j.coph.2009.08.006
[9]  Sarlangue, J., Brissaud, O. and Labreze, C. (2006) [Clinical Fea-tures of Pseudomonas aeruginosa Infections]. Archives de Pédiatrie, 13, S13-S16.
[10]  Franzetti, F., et al. (1992) Pseudomonas Infections in Patients with AIDS and AIDS-Related Complex. Journal of Internal Medicine, 231, 437-443.
https://doi.org/10.1111/j.1365-2796.1992.tb00957.x
[11]  Lode, H., et al. (2000) Nosocomial Pneumo-nia: Epidemiology, Pathogenesis, Diagnosis, Treatment and Prevention. Current Opinion in Infectious Diseases, 13, 377-384.
https://doi.org/10.1097/00001432-200008000-00009
[12]  Lyczak, J.B., Cannon, C.L. and Pier, G.B. (2000) Establishment of Pseudomonas aeruginosa Infection: Lessons from a Versatile Opportunist. Microbes and Infec-tion, 2, 1051-1060.
https://doi.org/10.1016/S1286-4579(00)01259-4
[13]  Saltzstein, D., et al. (2007) Complicated Urinary Tract Infections Treated with Extended-Release Ciprofloxacin with Emphasis on Pseudomonas aeruginosa. Journal of Chemotherapy, 19, 694-702.
https://doi.org/10.1179/joc.2007.19.6.694
[14]  Thomas, P., et al. (1985) Pseudomonas Dermatitis Associated with a Swimming Pool. JAMA, 253, 1156-1159.
https://doi.org/10.1001/jama.1985.03350320080022
[15]  Fleiszig, S.M. and Evans, D.J. (2002) The Pathogenesis of Bacterial Keratitis: Studies with Pseudomonas aeruginosa. Clinical and Experimental Optometry, 85, 271-278.
https://doi.org/10.1111/j.1444-0938.2002.tb03082.x
[16]  Hart, C.A. and Winstanley, C. (2002) Persistent and Aggressive Bacteria in the Lungs of Cystic Fibrosis Children. British Medical Bulletin, 61, 81-96.
https://doi.org/10.1093/bmb/61.1.81
[17]  Pasteur, M.C., et al. (2010) British Thoracic Society Guideline for Non-CF Bronchiectasis. Thorax, 65, i1-i58.
[18]  Nichols, W.W., et al. (1988) Inhibition of Tobramycin Diffusion by Binding to Alginate. Antimicrobial Agents and Chemotherapy, 32, 518-523.
https://doi.org/10.1128/AAC.32.4.518
[19]  Pages, J.M., James, C.E. and Winterhalter, M. (2008) The Porin and the Permeating Antibiotic: A Selective Diffusion Barrier in Gram-Negative Bacteria. Nature Reviews Microbiology, 6, 893-903.
https://doi.org/10.1038/nrmicro1994
[20]  Lambert, P.A. (2002) Mechanisms of Antibiotic Resistance in Pseudomonas aeruginosa. Journal of the Royal Society of Medicine, 95, 22-26.
[21]  Piddock, L.J. (2006) Multi-drug-Resistance Efflux Pumps? Not Just for Resistance. Nature Reviews Microbiology, 4, 629-636.
https://doi.org/10.1038/nrmicro1464
[22]  Coban, A.Y., Ekinci, B. and Durupinar, B. (2004) A Multidrug Efflux Pump Inhibitor Reduces Fluoroquinolone Resistance in Pseudomonas aeruginosa Isolates. Chemotherapy, 50, 22-26.
https://doi.org/10.1159/000077280
[23]  Hocquet, D., et al. (2007) MexAB-OprM- and MexXY-Overproducing Mutants Are Very Prevalent among Clinical Strains of Pseudomonas aeruginosa with Reduced Susceptibility to Ti-carcillin. Antimicrobial Agents and Chemotherapy, 51, 1582-1583.
https://doi.org/10.1128/AAC.01334-06
[24]  Sanchez, P., et al. (2002) Fitness of in Vitro Selected Pseudomonas aeruginosa nalB and nfxB Multidrug Resistant Mutants. Journal of Antimicrobial Chemotherapy, 50, 657-664.
https://doi.org/10.1093/jac/dkf185
[25]  Masterton, R.G. and Turner, P.J. (2006) Trends in Antimicrobial Suscep-tibility in UK Centres: The MYSTIC Programme (1997-2002). International Journal of Antimicrobial Agents, 27, 69-72.
https://doi.org/10.1016/j.ijantimicag.2005.09.011
[26]  Bendig, J.W., et al. (1987) Two Neutropenic Patients with Multiple Resistant Pseudomonas aeruginosa Septicaemia Treated with Ciprofloxacin. Journal of the Royal Society of Medicine, 80, 316-317.
https://doi.org/10.1177/014107688708000521
[27]  Brazas, M.D. and Hancock, R.E. (2005) Ciprofloxacin Induc-tion of a Susceptibility Determinant in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 49, 3222-3227.
https://doi.org/10.1128/AAC.49.8.3222-3227.2005
[28]  Aaron, S.D., et al. (2002) Single and Combination Anti-biotic Susceptibilities of Planktonic, Adherent, and Biofilm-Grown Pseudomonas aeruginosa Isolates Cultured from Sputa of Adults with Cystic Fibrosis. Journal of Clinical Microbiology, 40, 4172-4179.
https://doi.org/10.1128/JCM.40.11.4172-4179.2002
[29]  Kohler, T., et al. (1997) Characterization of MexE-MexF-OprN, a Positively Regulated Multidrug Efflux System of Pseudomonas aeruginosa. Molecular Microbi-ology, 23, 345-354.
https://doi.org/10.1046/j.1365-2958.1997.2281594.x
[30]  Bateman, F.L., et al. (2012) Bio-logical Efficacy and Stability of Diluted Ticarcillin-Clavulanic Acid in the Topical Treatment of Pseudomonas aeruginosa Infections. Veterinary Dermatology, 23, 97-e22.
https://doi.org/10.1111/j.1365-3164.2011.01018.x
[31]  Theuretzbacher, U. (2009) Future Antibiotics Scenarios: Is the Tide Starting to Turn? International Journal of Antimicrobial Agents, 34, 15-20.
https://doi.org/10.1016/j.ijantimicag.2009.02.005
[32]  Srinivas, N., et al. (2010) Peptidomimetic Antibiotics Target Outer-Membrane Biogenesis in Pseudomonas aeruginosa. Science, 327, 1010-1013.
https://doi.org/10.1126/science.1182749
[33]  Mesaros, N., et al. (2007) Pseudomonas aeruginosa: Resistance and Therapeutic Options at the Turn of the New Millennium. Clinical Microbiology and Infection, 13, 560-578.
https://doi.org/10.1111/j.1469-0691.2007.01681.x
[34]  Hoiby, N., Ciofu, O. and Bjarnsholt, T. (2010) Pseudo-monas aeruginosa Biofilms in Cystic Fibrosis. Future Microbiology, 5, 1663-1674.
https://doi.org/10.2217/fmb.10.125
[35]  Werner, E., et al. (2004) Stratified Growth in Pseudomonas aeruginosa Biofilms. Applied and Environmental Microbiology, 70, 6188-6196.
https://doi.org/10.1128/AEM.70.10.6188-6196.2004
[36]  Moreau-Marquis, S., Stanton, B.A. and O’Toole, G.A. (2008) Pseudomonas aeruginosa Biofilm Formation in the Cystic Fibrosis Airway. Pulmonary Pharmacology and Therapeutics, 21, 595-599.
https://doi.org/10.1016/j.pupt.2007.12.001
[37]  Whiteley, M., et al. (2001) Gene Expression in Pseudomonas ae-ruginosa Biofilms. Nature, 413, 860-864.
https://doi.org/10.1038/35101627
[38]  Hoffmann, N., et al. (2005) Novel Mouse Model of Chronic Pseudomonas aeruginosa Lung Infection Mimicking Cystic Fibrosis. Infection and Immunity, 73, 2504-2514.
https://doi.org/10.1128/IAI.73.4.2504-2514.2005
[39]  Hoiby, N., et al. (2011) The Clinical Impact of Bacterial Biofilms. International Journal of Oral Science, 3, 55-65.
[40]  Tielker, D., et al. (2005) Pseudomonas aeruginosa lec-tin LecB Is Located in the Outer Membrane and Is Involved in Biofilm Formation. Microbiology, 151, 1313-1323.
https://doi.org/10.1099/mic.0.27701-0
[41]  McIver, K., Kessler, E. and Ohman, D.E. (1991) Substitution of Ac-tive-Site His-223 in Pseudomonas aeruginosa Elastase and Expression of the Mutated lasB Alleles in Escherichia coli Show Evidence for Autoproteolytic Processing of Proelastase. Journal of Bacteriology, 173, 7781-7789.
https://doi.org/10.1128/JB.173.24.7781-7789.1991
[42]  Johansson, E.M., et al. (2008) Inhibition and Dispersion of Pseudomonas aeruginosa Biofilms by Glycopeptide Dendrimers Targeting the Fucose-Specific Lectin LecB. Chemi-cal Biology, 15, 1249-1257.
https://doi.org/10.1016/j.chembiol.2008.10.009
[43]  von Bismarck, P., Schneppenheim, R. and Schumacher, U. (2001) Successful Treatment of Pseudomonas aeruginosa Respiratory Tract Infection with a Sugar Solution—A Case Report on a Lectin Based Therapeutic Principle. Klinische P?diatrie, 213, 285-287.
https://doi.org/10.1055/s-2001-17220
[44]  Doggett, R.G., Harrison, G.M. and Wallis, E.S. (1964) Comparison of Some Properties of Pseudomonas aeruginosa Isolated from Infections in Persons with and without Cystic Fibrosis. Journal of Bacteriology, 87, 427-431.
https://doi.org/10.1128/JB.87.2.427-431.1964
[45]  Cobb, L.M., et al. (2004) Pseudomonas aeruginosa Flagellin and Alginate Elicit Very Distinct Gene Expression Patterns in Airway Epithelial Cells: Implications for Cystic Fibrosis Disease. The Journal of Immunology, 173, 5659-5670.
https://doi.org/10.4049/jimmunol.173.9.5659
[46]  Simpson, J.A., Smith, S.E. and Dean, R.T. (1989) Scavenging by Alginate of Free Radicals Released by Macrophages. Free Radical Biology and Medicine, 6, 347-353.
https://doi.org/10.1016/0891-5849(89)90078-6
[47]  Alipour, M., Suntres, Z.E. and Omri, A. (2009) Importance of DNase and Alginate Lyase for Enhancing Free and Liposome Encapsulated Aminoglycoside Activity against Pseu-domonas aeruginosa. Journal of Antimicrobial Chemotherapy, 64, 317-325.
https://doi.org/10.1093/jac/dkp165
[48]  Alkawash, M.A., Soothill, J.S. and Schiller, N.L. (2006) Alginate Lyase Enhances Antibiotic Killing of Mucoid Pseudomonas aeruginosa in Biofilms. APMIS, 114, 131-138.
https://doi.org/10.1111/j.1600-0463.2006.apm_356.x
[49]  Bayer, A.S., et al. (1992) Effects of Alginase on the Natural History and Antibiotic Therapy of Experimental Endocarditis Caused by Mucoid Pseudomonas aeruginosa. In-fection and Immunity, 60, 3979-3985.
https://doi.org/10.1128/IAI.60.10.3979-3985.1992
[50]  Lamppa, J.W., et al. (2011) Genetically Engineered Algi-nate Lyase-PEG Conjugates Exhibit Enhanced Catalytic Function and Reduced Immunoreactivity. PLoS ONE, 6, e17042.
https://doi.org/10.1371/journal.pone.0017042
[51]  Sudarsan, N., et al. (2008) Riboswitches in Eubacteria Sense the Second Messenger Cyclic di-GMP. Science, 321, 411-413.
https://doi.org/10.1126/science.1159519
[52]  An-toniani, D., et al. (2010) Monitoring of Diguanylate Cyclase Activity and of Cyclic-di-GMP Biosynthesis by Whole-Cell Assays Suitable for High-Throughput Screening of Biofilm Inhibitors. Applied Microbiology and Biotechnology, 85, 1095-1104.
https://doi.org/10.1007/s00253-009-2199-x
[53]  Ueda, A., et al. (2009) Uracil Influences Quorum Sensing and Biofilm Formation in Pseudomonas aeruginosa and Fluorouracil Is an Antagonist. Microbial Biotechnolo-gy, 2, 62-74.
https://doi.org/10.1111/j.1751-7915.2008.00060.x
[54]  Landini, P., et al. (2010) Molecular Mecha-nisms of Compounds Affecting Bacterial Biofilm Formation and Dispersal. Applied Microbiology and Biotechnology, 86, 813-823.
https://doi.org/10.1007/s00253-010-2468-8
[55]  Sauer, K., et al. (2004) Characterization of Nutri-ent-Induced Dispersion in Pseudomonas aeruginosa PAO1 Biofilm. Journal of Bacteriology, 186, 7312-7326.
https://doi.org/10.1128/JB.186.21.7312-7326.2004
[56]  Thormann, K.M., et al. (2005) Induction of Rapid De-tachment in Shewanella oneidensis MR-1 Biofilms. Journal of Bacteriology, 187, 1014-1021.
https://doi.org/10.1128/JB.187.3.1014-1021.2005
[57]  Barraud, N., et al. (2009) Nitric Oxide Signaling in Pseu-domonas aeruginosa Biofilms Mediates Phosphodiesterase Activity, Decreased Cyclic di-GMP Levels, and Enhanced Dispersal. Journal of Bacteriology, 191, 7333-7342.
https://doi.org/10.1128/JB.00975-09
[58]  Davies, D.G. and Marques, C.N. (2009) A Fatty Acid Messenger Is Responsible for Inducing Dispersion in Microbial Biofilms. Journal of Bacteriology, 191, 1393-1403.
https://doi.org/10.1128/JB.01214-08
[59]  Rice, S.A., et al. (2009) The Biofilm Life Cycle and Virulence of Pseu-domonas aeruginosa Are Dependent on a Filamentous Prophage. The ISME Journal, 3, 271-282.
https://doi.org/10.1038/ismej.2008.109
[60]  Sintim, H.O., et al. (2010) Paradigm Shift in Discovering Next-Generation Anti-Infective Agents: Targeting Quorum Sensing, c-di-GMP Signaling and Biofilm Formation in Bacteria with Small Molecules. Future Medicinal Chemistry, 2, 1005-1035.
https://doi.org/10.4155/fmc.10.185
[61]  Wu, H., et al. (2011) Effects of Ginseng on Pseudomonas aeruginosa Motility and Biofilm Formation. FEMS Immunology and Medical Microbiology, 62, 49-56.
https://doi.org/10.1111/j.1574-695X.2011.00787.x
[62]  Dean, S.N., Bishop, B.M. and van Hoek, M.L. (2011) Susceptibility of Pseudomonas aeruginosa Biofilm to Alpha-Helical Peptides: D-Enantiomer of LL-37. Frontiers in Mi-crobiology, 2, 128.
https://doi.org/10.3389/fmicb.2011.00128
[63]  Eckert, R. (2011) Road to Clinical Efficacy: Challenges and Novel Strategies for Antimicrobial Peptide Development. Frontiers in Microbiology, 6, 635-651.
https://doi.org/10.2217/fmb.11.27
[64]  Lambert, C., et al. (2011) Predatory Bdellovibrio Bacteria Use Gliding Motility to Scout for Prey on Surfaces. Journal of Bacteriology, 193, 3139-3141.
https://doi.org/10.1128/JB.00224-11
[65]  Atterbury, R.J., et al. (2011) Effects of Orally Administered Bdellovib-rio bacteriovorus on the Well-Being and Salmonella Colonization of Young Chicks. Applied and Environmental Micro-biology, 77, 5794-5803.
https://doi.org/10.1128/AEM.00426-11
[66]  Dashiff, A., et al. (2011) Predation of Human Pathogens by the Predatory Bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. Journal of Applied Microbiology, 110, 431-444.
https://doi.org/10.1111/j.1365-2672.2010.04900.x
[67]  Girard, G. and Bloemberg, G.V. (2008) Central Role of Quorum Sensing in Regulating the Production of Pathogenicity Factors in Pseudomonas aeruginosa. Future Microbiol-ogy, 3, 97-106.
https://doi.org/10.2217/17460913.3.1.97
[68]  Winstanley, C. and Fothergill, J.L. (2009) The Role of Quorum Sensing in Chronic Cystic Fibrosis Pseudomonas aeruginosa Infections. FEMS Microbiology Letters, 290, 1-9.
https://doi.org/10.1111/j.1574-6968.2008.01394.x
[69]  Schuster, M., et al. (2003) Identification, Timing, and Signal Specificity of Pseudomonas aeruginosa Quorum-Controlled Genes: A Transcriptome Analysis. Journal of Bac-teriology, 185, 2066-2079.
https://doi.org/10.1128/JB.185.7.2066-2079.2003
[70]  Wagner, V.E. and Iglewski, B.H. (2008) P. aeruginosa Biofilms in CF Infection. Clinical Reviews in Allergy & Immunology, 35, 124-134.
https://doi.org/10.1007/s12016-008-8079-9
[71]  Latifi, A., et al. (1996) A Hierarchical Quorum-Sensing Cascade in Pseudomonas aeruginosa Links the Transcriptional Activators LasR and RhIR (VsmR) to Expression of the Station-ary-Phase Sigma Factor RpoS. Molecular Microbiology, 1, 1137-1146.
https://doi.org/10.1046/j.1365-2958.1996.00063.x
[72]  Davies, D.G., et al. (1998) The Involvement of Cell-to-Cell Signals in the Development of a Bacterial Biofilm. Science, 280, 295-298.
https://doi.org/10.1126/science.280.5361.295
[73]  Juhas, M., et al. (2005) GeneChip Expression Analysis of the VqsR Regulon of Pseudomonas aeruginosa TB. FEMS Microbiology Letters, 242, 287-295.
https://doi.org/10.1016/j.femsle.2004.11.020
[74]  Bjarnsholt, T., et al. (2005) Pseudomonas aeruginosa Tolerance to Tobramycin, Hydrogen Peroxide and Polymorphonuclear Leukocytes Is Quorum-Sensing Dependent. Microbiology, 151, 373-383.
https://doi.org/10.1099/mic.0.27463-0
[75]  Bjarnsholt, T., et al. (2005) Garlic Blocks Quorum Sensing and Pro-motes Rapid Clearing of Pulmonary Pseudomonas aeruginosa Infections. Microbiology, 151, 3873-3880.
https://doi.org/10.1099/mic.0.27955-0
[76]  Wu, H., et al. (2004) Synthetic Furanones Inhibit Quorum-Sensing and Enhance Bacterial Clearance in Pseudomonas aeruginosa Lung Infection in Mice. Journal of Antimicrobial Chemo-therapy, 53, 1054-1061.
https://doi.org/10.1093/jac/dkh223
[77]  Hoffmann, N., et al. (2007) Azithromycin Blocks Quorum Sensing and Alginate Polymer Formation and Increases the Sensitivity to Serum and Stationary-Growth-Phase Killing of Pseudomo-nas aeruginosa and Attenuates Chronic P. aeruginosa Lung Infection in Cftr?/? Mice. Antimicrobial Agents and Chem-otherapy, 51, 3677-3687.
https://doi.org/10.1128/AAC.01011-06
[78]  Moriarty, T.F., et al. (2007) Sputum Antibiotic Concentrations: Im-plications for Treatment of Cystic Fibrosis Lung Infection. Pediatric Pulmonology, 42, 1008-1017.
https://doi.org/10.1002/ppul.20671
[79]  Gooderham, W.J. and Hancock, R.E. (2009) Regulation of Virulence and Antibiotic Resistance by Two-Component Regulatory Systems in Pseudomonas aeruginosa. FEMS Microbiology Re-views, 33, 279-294.
https://doi.org/10.1111/j.1574-6976.2008.00135.x
[80]  Chauhan, N. and Calderone, R. (2008) Two-Component Signal Transduction Proteins as Potential Drug Targets in Medically Important Fungi. Infection and Immunity, 76, 4795-4803.
https://doi.org/10.1128/IAI.00834-08
[81]  Gotoh, Y., et al. (2010) Two-Component Signal Transduc-tion as Potential Drug Targets in Pathogenic Bacteria. Current Opinion in Microbiology, 13, 232-239.
https://doi.org/10.1016/j.mib.2010.01.008
[82]  Lee, V.T., et al. (2005) Activities of Pseudomonas aeruginosa Ef-fectors Secreted by the Type III Secretion System in Vitro and during Infection. Infection and Immunity, 73, 1695-1705.
https://doi.org/10.1128/IAI.73.3.1695-1705.2005
[83]  Goure, J., et al. (2005) Protective Anti-V Antibodies In-hibit Pseudomonas and Yersinia Translocon Assembly within Host Membranes. The Journal of Infectious Diseases, 192, 218-225.
https://doi.org/10.1086/430932
[84]  Frank, D.W., et al. (2002) Generation and Characterization of a Protective Monoclonal Antibody to Pseudomonas aeruginosa PcrV. The Journal of Infectious Diseases, 186, 64-73.
https://doi.org/10.1086/341069
[85]  Meyer, J.M., et al. (1996) Pyoverdin Is Essential for Virulence of Pseudo-monas aeruginosa. Infection and Immunity, 64, 518-523.
https://doi.org/10.1128/IAI.64.2.518-523.1996
[86]  Lamont, I.L., et al. (2002) Siderophore-Mediated Signaling Regulates Virulence Factor Production in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 99, 7072-7077.
https://doi.org/10.1073/pnas.092016999
[87]  Halwani, M., et al. (2008) Co-Encapsulation of Gallium with Gen-tamicin in Liposomes Enhances Antimicrobial Activity of Gentamicin against Pseudomonas aeruginosa. Journal of An-timicrobial Chemotherapy, 62, 1291-1297.
https://doi.org/10.1093/jac/dkn422
[88]  Michel-Briand, Y. and Baysse, C. (2002) The Pyocins of Pseudomonas aeruginosa. Biochimie, 84, 499-510.
https://doi.org/10.1016/S0300-9084(02)01422-0
[89]  Filiatrault, M.J., Munson Jr., R.S. and Campagnari, A.A. (2001) Genetic Analysis of a Pyocin-Resistant Lipooligosaccharide (LOS) Mutant of Haemophilus ducreyi: Restoration of Full-Length LOS Restores Pyocin Sensitivity. Journal of Bacteriology, 183, 5756-5761.
https://doi.org/10.1128/JB.183.19.5756-5761.2001
[90]  Bakkal, S., et al. (2010) Role of Bacteriocins in Mediat-ing Interactions of Bacterial Isolates Taken from Cystic Fibrosis Patients. Microbiology, 156, 2058-2067.
https://doi.org/10.1099/mic.0.036848-0
[91]  Govan, J.R. (1986) In Vivo Significance of Bacteriocins and Bacteri-ocin Receptors. Scandinavian Journal of Infectious Diseases, 49, 31-37.
[92]  Scholl, D. and Martin Jr., D.W. (2008) Antibacterial Efficacy of R-Type Pyocins towards Pseudomonas aeruginosa in a Murine Peritonitis Model. Antimicro-bial Agents and Chemotherapy, 52, 1647-1652.
https://doi.org/10.1128/AAC.01479-07
[93]  Line, J.E., et al. (2008) Isolation and Purification of Enterocin E-760 with Broad Antimicrobial Activity against Gram-Positive And Gram-Negative Bacteria. Antimicrobial Agents and Chemotherapy, 52, 1094-1100.
https://doi.org/10.1128/AAC.01569-06
[94]  Cherif, A., et al. (2003) Detection and Characterization of the Novel Bacteriocin Entomocin 9, and Safety Evaluation of Its Producer, Bacillus thuringiensis ssp. entomocidus HD9. Journal of Applied Microbiology, 95, 990-1000.
https://doi.org/10.1046/j.1365-2672.2003.02089.x
[95]  Ling, H., et al. (2010) A Predicted S-Type Pyocin Shows a Bactericidal Activity against Clinical Pseudomonas aeruginosa Isolates through Membrane Damage. FEBS Letters, 584, 3354-3358.
https://doi.org/10.1016/j.febslet.2010.06.021
[96]  Montalban-Lopez, M., et al. (2011) Are Bacteriocins Underex-ploited? Novel Applications for Old Antimicrobials. Current Pharmaceutical Biotechnology, 12, 1205-1220.
https://doi.org/10.2174/138920111796117364
[97]  Corr, S.C., Hill, C. and Gahan, C.G. (2009) Understanding the Mechanisms by Which Probiotics Inhibit Gastrointestinal Pathogens. Advances in Food and Nutrition Research, 56, 1-15.
https://doi.org/10.1016/S1043-4526(08)00601-3
[98]  Denayer, S., Matthijs, S. and Cornelis, P. (2007) Pyocin S2 (Sa) Kills Pseudomonas aeruginosa Strains via the FpvA Type I Ferripyoverdine Receptor. Journal of Bacte-riology, 189, 7663-7668.
https://doi.org/10.1128/JB.00992-07
[99]  Harper, D.R. and Enright, M.C. (2011) Bacte-riophages for the Treatment of Pseudomonas aeruginosa Infections. Journal of Applied Microbiology, 111, 1-7.
https://doi.org/10.1111/j.1365-2672.2011.05003.x
[100]  Levin, B.R. and Bull, J.J. (2004) Population and Evolu-tionary Dynamics of Phage Therapy. Nature Reviews Microbiology, 2, 166-173.
https://doi.org/10.1038/nrmicro822
[101]  Cooper, C.J., Denyer, S.P. and Maillard, J.Y. (2011) Rapid and Quantita-tive Automated Measurement of Bacteriophage Activity against Cystic Fibrosis Isolates of Pseudomonas aeruginosa. Journal of Applied Microbiology, 110, 631-640.
https://doi.org/10.1111/j.1365-2672.2010.04928.x
[102]  Hanlon, G.W., et al. (2001) Reduction in Exopolysaccha-ride Viscosity as an Aid to Bacteriophage Penetration through Pseudomonas aeruginosa Biofilms. Applied and Envi-ronmental Microbiology, 67, 2746-2753.
https://doi.org/10.1128/AEM.67.6.2746-2753.2001
[103]  Fu, W., et al. (2000) Bacteriophage Cocktail for the Pre-vention of Biofilm Formation by Pseudomonas aeruginosa on Catheters in an in Vitro Model System. Antimicrobial Agents and Chemotherapy, 54, 397-404.
https://doi.org/10.1128/AAC.00669-09
[104]  Debarbieux, L., et al. (2010) Bacteriophages Can Treat and Prevent Pseudomonas aeruginosa Lung Infections. The Journal of Infectious Diseases, 201, 1096-1104.
https://doi.org/10.1086/651135
[105]  Morello, E., et al. (2011) Pulmonary Bacteriophage Therapy on Pseudomo-nas aeruginosa Cystic Fibrosis Strains: First Steps towards Treatment and Prevention. PLoS ONE, 6, e16963.
https://doi.org/10.1371/journal.pone.0016963
[106]  Hawkins, C., et al. (2010) Topical Treatment of Pseudomonas aeruginosa otitis of Dogs with a Bacteriophage Mixture: A before/after Clinical Trial. Veterinary Microbiology, 146, 309-313.
https://doi.org/10.1016/j.vetmic.2010.05.014
[107]  Wright, A., et al. (2009) A Controlled Clinical Trial of a Thera-peutic Bacteriophage Preparation in Chronic Otitis Due to Antibiotic-Resistant Pseudomonas aeruginosa; a Preliminary Report of Efficacy. Clinical Otolaryngology, 34, 349- 357.
https://doi.org/10.1111/j.1749-4486.2009.01973.x
[108]  Golshahi, L., et al. (2011) In Vitro Lung Delivery of Bac-teriophages KS4-M and PhiKZ Using Dry Powder Inhalers for Treatment of Burkholderia cepacia Complex and Pseu-domonas aeruginosa Infections in Cystic Fibrosis. Journal of Applied Microbiology, 110, 106-117.
https://doi.org/10.1111/j.1365-2672.2010.04863.x
[109]  Lu, T.K. and Collins, J.J. (2007) Dispersing Biofilms with Engineered Enzymatic Bacteriophage. Proceedings of the National Academy of Sciences of the United States of America, 104, 11197-11202.
https://doi.org/10.1073/pnas.0704624104
[110]  Lu, T.K. and Collins, J.J. (2009) Engineered Bacteriophage Tar-geting Gene Networks as Adjuvants for Antibiotic Therapy. Proceedings of the National Academy of Sciences of the United States of America, 106, 4629-4634.
https://doi.org/10.1073/pnas.0800442106
[111]  Hagens, S., et al. (2004) Therapy of Experimental Pseudomonas Infections with a Nonreplicating Genetically Modified Phage. Antimicrobial Agents and Chemotherapy, 48, 3817-3822.
https://doi.org/10.1128/AAC.48.10.3817-3822.2004
[112]  Borysowski, J., Weber-Dabrowska, B. and Gorski, A. (2006) Bacteriophage Endolysins as a Novel Class of Antibacterial Agents. Experimental Biology and Medicine (May-wood), 231, 366-377.
https://doi.org/10.1177/153537020623100402
[113]  Nelson, D., Loomis, L. and Fischetti, V.A. (2001) Prevention and Elimination of Upper Respiratory Colonization of Mice by Group A Streptococci by Using a Bacteriophage Lytic Enzyme. Proceedings of the National Academy of Sci- ences of the United States of America, 98, 4107-4112.
https://doi.org/10.1073/pnas.061038398
[114]  Briers, Y., Walmagh, M. and Lavigne, R. (2011) Use of Bacterio-phage Endolysin EL188 and Outer Membrane Permeabilizers against Pseudomonas aeruginosa. Journal of Applied Mi-crobiology, 110, 778-785.
https://doi.org/10.1111/j.1365-2672.2010.04931.x
[115]  Rashel, M., et al. (2007) Efficient Elimination of Multi-drug-Resistant Staphylococcus aureus by Cloned Lysin Derived from Bacteriophage phiMR11. The Journal of Infec-tious Diseases, 196, 1237-1247.
https://doi.org/10.1086/521305
[116]  Fischetti, V.A. (2008) Bacteriophage Lysins as Effective Antibacterials. Current Opinion in Microbiology, 11, 393- 400.
https://doi.org/10.1016/j.mib.2008.09.012
[117]  Doring, G. and Pier, G.B. (2008) Vaccines and Immunotherapy against Pseudomonas aeruginosa. Vaccine, 26, 1011- 1024.
https://doi.org/10.1016/j.vaccine.2007.12.007
[118]  Pennington, J.E., et al. (1975) Use of a Pseudomonas aeru-ginosa Vaccine in Patients with Acute Leukemia and Cystic Fibrosis. The American Journal of Medicine, 58, 629-636.
https://doi.org/10.1016/0002-9343(75)90498-2
[119]  Cryz Jr., S.J., et al. (1991) Clinical Evaluation of an Octava-lent Pseudomonas aeruginosa Conjugate Vaccine in Plasma Donors and in Bone Marrow Transplant and Cystic Fibro-sis Patients. Antibiotics and Chemotherapy, 44, 157-162.
https://doi.org/10.1159/000420310
[120]  Lang, A.B., et al. (2004) Vaccination of Cystic Fibrosis Patients against Pseudomonas aeruginosa Reduces the Proportion of Patients Infected and Delays Time to Infection. The Pediatric Infec-tious Disease Journal, 23, 504-510.
https://doi.org/10.1097/01.inf.0000129688.50588.ac
[121]  Doring, G., et al. (2007) A Double-Blind Randomized Placebo-Controlled Phase III Study of a Pseudomonas aeruginosa Flagella Vaccine in Cystic Fibrosis Patients. Pro-ceedings of the National Academy of Sciences of the United States of America, 104, 11020-11025.
https://doi.org/10.1073/pnas.0702403104
[122]  Palliyil, S. and Broadbent, I.D. (2009) Novel Immunotherapeutic Approaches to the Treatment of Infections Caused by Gram-Negative Bacteria. Current Opinion in Pharmacology, 9, 566-570.
https://doi.org/10.1016/j.coph.2009.07.007
[123]  Baer, M., et al. (2009) An Engineered Human Antibody Fab Fragment Specific for Pseudomonas aeruginosa PcrV Antigen Has Potent Antibacterial Activity. Infection and Immunity, 77, 1083-1090.
https://doi.org/10.1128/IAI.00815-08
[124]  Faezi, S., et al. (2011) Passive Immunisation against Pseudomonas aeruginosa Recombinant Flagellin in an Experimental Model of Burn Wound Sepsis. Burns, 37, 865-872.
https://doi.org/10.1016/j.burns.2010.12.003
[125]  Moskwa, P., et al. (2007) A Novel Host Defense System of Airways Is Defective in Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 175, 174-183.
https://doi.org/10.1164/rccm.200607-1029OC
[126]  Woodford, N., Wareham, D.W. and U.K.A.A.S. Group (2009) Tackling Antibiotic Resistance: A Dose of Common Antisense? Journal of Antimicrobial Chemotherapy, 63, 225-229.
https://doi.org/10.1093/jac/dkn467
[127]  Bai, H., et al. (2010) Antisense Antibiotics: A Brief Review of Novel Target Discovery and Delivery. Current Drug Discovery Technologies, 7, 76-85.
https://doi.org/10.2174/157016310793180594
[128]  Metzker, M.L. (2010) Sequencing Technologies—The Next Generation. Nature Reviews Genetics, 11, 31-46.
https://doi.org/10.1038/nrg2626
[129]  Winsor, G.L., et al. (2009) Pseudomonas Genome Database: Facilitating User-Friendly, Comprehensive Comparisons of Microbial Genomes. Nucleic Acids Research, 37, D483-D488.
https://doi.org/10.1093/nar/gkn861
[130]  O’Carroll, M.R., et al. (2004) Clonal Strains of Pseudomonas aeruginosa in Paediatric and Adult Cystic Fibrosis Units. European Respiratory Society, 24, 101-106.
https://doi.org/10.1183/09031936.04.00122903
[131]  Winstanley, C., et al. (2009) Newly Introduced Genomic Prophage Islands Are Critical Determinants of in Vivo Competitiveness in the Liverpool Epidemic Strain of Pseudomo-nas aeruginosa. Genome Research, 19, 12-23.
https://doi.org/10.1101/gr.086082.108
[132]  Parsons, Y.N., et al. (2002) Use of Subtractive Hybridization to Iden-tify a Diagnostic Probe for a Cystic Fibrosis Epidemic Strain of Pseudomonas aeruginosa. Journal of Clinical Microbi-ology, 40, 4607-4611.
https://doi.org/10.1128/JCM.40.12.4607-4611.2002
[133]  Mowat, E., et al. (2011) Pseudomonas aeruginosa Pop-ulation Diversity and Turnover in Cystic Fibrosis Chronic Infections. American Journal of Respiratory and Critical Care Medicine, 183, 1674-1679.
https://doi.org/10.1164/rccm.201009-1430OC
[134]  Armougom, F., et al. (2009) Microbial Diversity in the Spu-tum of a Cystic Fibrosis Patient Studied with 16S rDNA Pyrosequencing. European Journal of Clinical Microbiology & Infectious Diseases, 28, 1151-1154.
https://doi.org/10.1007/s10096-009-0749-x
[135]  Caporaso, J.G., et al. (2011) Moving Pictures of the Human Mi-crobiome. Genome Biology, 12, Article No. R50.
https://doi.org/10.1186/gb-2011-12-5-r50
[136]  Tunney, M.M., et al. (2008) Detection of Anaerobic Bacteria in High Numbers in Sputum from Patients with Cystic Fibrosis. American Journal of Respiratory and Critical Care Medi-cine, 177, 995-1001.
https://doi.org/10.1164/rccm.200708-1151OC
[137]  Cox, M.J., et al. (2010) Airway Microbiota and Pathogen Abundance in Age-Stratified Cystic Fibrosis Patients. PLoS ONE, 5, e11044.
https://doi.org/10.1371/journal.pone.0011044

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133