全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

胶东半岛夏甸金矿床热液绿泥石矿物学特征及其对流体演化的指示意义
The Mineralogy Characteristics of Hydrothermal Chlorites of Xiadian Gold Deposits in Jiaodong Peninsula and Its Implication on Fluid Evolution

DOI: 10.12677/AG.2020.107059, PP. 593-615

Keywords: 胶东半岛,夏甸金矿床,热液蚀变,绿泥石化,地球化学
Jiaodong Peninsula
, Xiadian Gold Deposit, Hydrothermal Alteration, Chloritization, Geochemistry

Full-Text   Cite this paper   Add to My Lib

Abstract:

夏甸金矿床为典型的受构造控制的热液矿床,断层两侧围岩广泛发育大规模的热液蚀变,绿泥石可见于各类蚀变带中,与各期次流体具有紧密的联系。本文根据绿泥石的伴生矿物,划分了绿泥石的形成期次,使用电子探针分析了绿泥石中的主量元素,基于Si、Fe、AlIV、AlVI、Mg、Fe/(Fe + Mg)等参数,区分了变质成因和热液成因绿泥石,并讨论了各阶段离子置换作用对绿泥石的影响,以及绿泥石组分对于热液流体的指示意义。结果显示,从早期到晚期,绿泥石反映了热液流体酸性、温度下降,氧逸度升高的特征,并在此基础上区分出可能存在的两期热液事件。
The Xiadian gold deposit is a typical fault controlled hydrothermal deposit, with widespread hy-drothermal alteration along the wallrock around the fault. Chlorite is found present in all kinds of alteration belt, which has a close relationship with the fluid of each stage. In this paper, we divided the forming stage of chlorite firstly by its co-existing mineral, and used the Electronic Micro Probe Analyses (EPMA) to analyze the major element in chlorite. Based on Si, Fe, AlⅣ, AlⅥ, Mg, Fe/(Fe + Mg), we separate the metamorphic chlorites from hydrothermal chlorites, and discussed the impact of cation substitutions on chlorite among different stage and the implication of the chlorite’s compositions on hydrothermal fluid. The result shows that, from early stage to late, the chlorites have indicated the fluid with a decreasing acidity, and temperature and increasing oxygen fugacity. We found a possible two-stage hydrothermal events based on the hydrothermal chlorites’ characteristics.

References

[1]  吕古贤. 山东玲珑金矿田和焦家金矿田成矿深度的测算与研究方法[J]. 中国科学(D辑), 1997, 27(4): 337-342.
[2]  张良, 夺广伟, 郑小礼, 等. 胶东三山岛金矿床构造–热历史: 40Ar/39Ar和裂变径迹年代学制约[J]. 岩石学报, 2016, 32(8): 2465-2476.
[3]  Hu, F.F., Fan, H.R., Yang, J.H., et al. (2005) Mineralizing Age and Ore-Forming Fluid Evolution in the Rushan Lode Gold Deposit, Jiaodong Peninsula, Eastern China. Proceedings of the Eighth Biennial SGA Meeting, Beijing, 18-21 August 2005, 973-976. https://doi.org/10.1007/3-540-27946-6_248
[4]  张瑞忠, 王中亮, 王偲瑞, 等. 胶西北大尹格金矿床成矿机理: 载金黄铁矿标型及硫同位素地球化学约束[J]. 岩石学报, 2016, 32(8): 2451-2464.
[5]  王偲瑞, 杨立强, 孔鹏飞. 焦家断裂渗透性结构与金矿床群聚机理: 构造应力转移模拟[J]. 岩石学报, 2016, 32(8): 2494-2508.
[6]  Wang, C.M., Deng, J., Santosh, M., et al. (2015) Timing, Tectonic Implications and Genesis of Gold Mineralization in the Xincheng Gold Deposit, China: C-H-O Isotopes, Pyrite Rb-Sr and Zircon Fission Track Thermochronometry. Ore Geology Reviews, 65, 659-673. https://doi.org/10.1016/j.oregeorev.2014.04.022
[7]  Xu, K.Q., Ni, P., Zhu, J.C., et al. (1997) Important Geological Factors Controlling the Formation of Gold Deposits in East China. Chinese Journal of Geochemistry, 1, 1-7. https://doi.org/10.1007/BF02843367
[8]  Zhang, X.O., Cawood, P.A., Wilde, S.A., et al. (2003) Geology and Timing of Mineralization at the Cangshang Gold Deposit, North-Western Jiaodong Peninsula, China. Mineralium Deposita, 38, 141-153. https://doi.org/10.1007/s00126-002-0290-7
[9]  邓军, 徐守礼, 吕古贤. 胶东西北部断裂构造与成矿作用研究[J]. 现代地质, 1996, 10(4): 502-511.
[10]  郭涛. 胶西北金矿区域成矿系统及其构造–流体–矿化研究[D]: [博士学位论文]. 北京: 中国地质大学, 2005.
[11]  卢焕章, Arcam G, 李院生, 等. 山东玲珑–焦家地区形变类型与金矿的关系[J]. 地质学报, 1999, 73(2): 174-188.
[12]  张有瑜. 粘土矿物与粘土矿物分析[M]. 北京: 海洋出版社, 1990.
[13]  Bourdelle, F. and Cathelineau, M. (2015) Low-Temperature Chlorite Geothermometry: A Graphical Representation Based on a T-R2+-Si Diagram. European Journal of Mineralogy, 27, 617-626. https://doi.org/10.1127/ejm/2015/0027-2467
[14]  Li, L., Santosh, M. and Li, S.R. (2015) The “Jiaodong Type” Gold Deposits: Characteristics, Origin and Prospecting. Ore Geology Reviews, 65, 589-611. https://doi.org/10.1016/j.oregeorev.2014.06.021
[15]  Wilkinson, J.J., Chang, Z., Cooke, D.R., et al. (2015) The chlorite Proximitor: A New Tool for Detecting Porphyry Ore Deposits. Journal of Geochemical Exploration, 152, 10-26. https://doi.org/10.1016/j.gexplo.2015.01.005
[16]  Maydagan, L., Franchini, M., Impiccini, A., et al. (2018) Chlorite, white Mica and Clay Minerals as Proximity Indicators to Ore in the Shallow Porphyry Environment of Quebrada de la Mina Deposit, Argentina. Ore Geology Reviews, 92, 297-317. https://doi.org/10.1016/j.oregeorev.2017.11.028
[17]  Inoue, A., Meunier, A., Patriermas, P., et al. (2009) Application of Chemical Geothermometry to Low-Temperature Trioctahedral Chlorites. Clays and Clay Minerals, 57, 371-382. https://doi.org/10.1346/CCMN.2009.0570309
[18]  Jowett, E.C. (1991) Fitting Iron and Magnesium into the Hydrothermal Chlorite Geothermometer. GAC/MAC/SEG Joint Annual Meet-ing.
[19]  Kranidiotis, P. and Maclean, W.H. (1987) Systematics of Chlorite Alteration at the Phelps Dodge Massive Sulfide Deposit, Matagami, Quebec. Economic Geology, 82, 1898-1911. https://doi.org/10.2113/gsecongeo.82.7.1898
[20]  Battaglia, S. (1999) Applying X-Ray Geothermometer Diffraction to a Chlorite. Clays and Clay Minerals, 47, 54-63. https://doi.org/10.1346/CCMN.1999.0470106
[21]  Wang, Z., Chen, B., Yan, X., et al. (2018) Characteristics of Hydrothermal Chlorite from the Niujuan Ag-Au-Pb-Zn Deposit in the North Margin of NCC and Implications for Exploration Tools for Ore Deposits. Ore Geology Reviews, 101, 398-412. https://doi.org/10.1016/j.oregeorev.2018.08.003
[22]  廖震, 刘玉平, 李朝阳, 等. 都龙锡锌矿床绿泥石特征及其成矿意义[J]. 矿床地质, 2010, 29(1): 169-176.
[23]  余驰达, 王凯兴, 刘晓东, 等, 王雅迪. 岌岭铀矿床绿泥石特征与地质意义[J]. 矿物学报, 2020, 40: 1-13
[24]  赵友东, 吴俊奇, 凌洪飞, 等. 赣南富城岩体黑云母及其蚀变产物绿泥石的矿物化学研究——对铀成矿的指示意义[J]. 矿床地质, 2016, 35(1): 153-168.
[25]  Chinchilla, D., Arroyo, X., Merinero, R., et al. (2016) Chlorite Geothermometry Applied to Massive and Oscillatory-Zoned Radiated Mn-Rich Chlorites in the Patricia Zn-Pb-Ag Epithermal Deposit (NE, Chile). Applied Clay Science, 134, 210-220. https://doi.org/10.1016/j.clay.2016.10.013
[26]  Xiao, B., Chen, H., Wang, Y., et al. (2017) Chlorite and Epidote Chemistry of the Yandong Cu Deposit, NW China: Metallogenic and Exploration Implications for Paleozoic Porphyry Cu Systems in the Eastern Tianshan. Ore Geology Reviews, 100, 168-182. https://doi.org/10.1016/j.oregeorev.2017.03.004
[27]  Chai, P., Hou, Z.Q. and Zhang, Z.Y. (2017) Geology, Fluid Inclusion and Stable Isotope Constraints on the Fluid Evolution and Resource Potential of the Xiadian Gold Deposit, Jiaodong Peninsula. Resource Geology, 67, 341-359. https://doi.org/10.1111/rge.12134
[28]  Liu, J.C., Wang, J.Y., Liu, Y., et al. (2017) Ore Genesis of the Xiadian Gold Deposit, Jiaodong Peninsula, East China: Information from Fluid Inclusions and Mineralization. Geological Journal, 53, 1-19. https://doi.org/10.1002/gj.3042
[29]  Song, M.C., Li, S.Z., Santosh, M., et al. (2015) Types, Characteristics and Metallogenesis of Gold Deposits in the Jiaodong Peninsula, Eastern North China Craton. Ore Geology Reviews, 65, 612-625. https://doi.org/10.1016/j.oregeorev.2014.06.019
[30]  Yang, L.Q., Deng, J., Wang, Z.L., et al. (2016) Thermochronologic Constraints on Evolution of the Linglong Metamorphic Core Complex and Implications for Gold Mineralization: A Case Study from the Xiadian Gold Deposit, Jiaodong Peninsula, Eastern China. Ore Geology Reviews, 72, 165-178. https://doi.org/10.1016/j.oregeorev.2015.07.006
[31]  Masaki, E., Kazuhiro, S., Zhai, M.G., et al. (1993) The Chemical Th-U-Total Pb Isochron Ages of Jiaodong and Jiaonan Metamorphic Rocks in the Shandong Peninsula, Eastern China. Island Arc, 2, 104-113. https://doi.org/10.1111/j.1440-1738.1993.tb00078.x
[32]  唐俊, 郑永飞, 吴元保, 等. 胶东地块西部变质岩锆石U-Pb定年和氧同位素研究[J]. 岩石学报, 2004, 20(5): 77-100.
[33]  Ma, W.D., Fan, H.R., Liu, X., et al. (2017) Geochronological Framework of the Xiadian Gold Deposit in the Jiaodong Province, China: Implications for the Timing of Gold Mineralization. Ore Geology Reviews, 86, 196-211. https://doi.org/10.1016/j.oregeorev.2017.02.016
[34]  陈衍景, Pirajno F, 赖勇, 等. 胶东矿集区大规模成矿时间和构造环境[J]. 岩石学报, 2004, 20(4): 145-160.
[35]  Yavuz, F., Kumral, M., Karakaya, N., et al. (2015) A Windows Program for Chlorite Calculation and Classification. Computers & Geosciences, 81, 101-113. https://doi.org/10.1016/j.cageo.2015.04.011
[36]  Foster, M.D. (1962) Interpretation of the Composition and a Classification of the Chlorites. U.S. Geological Survey Professional Paper, 414. https://doi.org/10.3133/pp414A
[37]  Zane, A. and Weiss, Z. (1998) A Procedure for Classifying Rock-Forming Chlorites Based on Microprobe Data. Rendiconti Lincei, 9, 51-56. https://doi.org/10.1007/BF02904455
[38]  张伟, 张寿庭, 曹华文, 等. 滇西小龙河锡矿床中绿泥石矿物特征及其指示意义[J]. 程度理工大学学报(自然科学版), 2014, 41(3): 318-328.
[39]  郭飞, 王智琳, 许德如, 董国军, 宁钧陶, 王展, 邓腾, 于得水, 崔宇. 湘东北地区栗山铅锌铜多金属矿床的成因探讨: 来自矿床地质、矿物学和硫同位素的证据[J]. 南京大学学报(自然科学), 2018, 54(2): 366-385.
[40]  Cathelineau, M. and Nieva, D. (1985) A Chlorite Solid Solution Geothermometer the Los Azufres (Mexico) Geothermal System. Contributions to Mineralogy and Petrology, 91, 235-244. https://doi.org/10.1007/BF00413350
[41]  Chai, P., Hou, Z.Q. and Zhang, Z.Y. (2017) Geology, Fluid Inclusion and Stable Isotope Constraints on the Fluid Evolution and Resource Potential of the Xiadian Gold Deposit, Jiaodong Peninsula. Resource Geology, 67, 341-359. https://doi.org/10.1111/rge.12134

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133