全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

连续性血液净化对于脓毒症早期血管内皮通透性标志物Ang-1及SDC-1的影响
Effect of CRRT on Ang-1 and SDC-1 in Acute Kidney Injury in the Early Stage of Sepsis

DOI: 10.12677/ACM.2020.107202, PP. 1337-1347

Keywords: 脓毒症,急性肾损伤,连续性血液净化,Angiopoietin-1,Syndecan-1
Sepsis
, Acute Kidney Injury, Continuous Renal Replacement Therapy, Angiopoietin-1, Syndecan-1

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:探讨连续性血液净化(Continuous Renal Replacement Therapy, CRRT)对脓毒症急性肾损伤(acute kidney injury, AKI)内皮细胞通透性的影响。方法:本研究纳入了2015年12月~2016年12月入住我院明确诊断为脓毒症合并AKI患者共计29例。所有入选患者随机分为对照组和实验组。对照组给予常规脓毒症集束化治疗,试验组在常规脓毒症集束化治疗的基础上给予CRRT治疗。应用酶联免疫吸附测定(ELISA)技术,检测脓毒症AKI的患者血浆血管生成素-1 (Angiopoietin-1, Ang-1)和多糖包被标志物多配体聚糖-1 (Syndecan-1, SDC-1)浓度水平,结合患者的临床指标的变化水平,观察CRRT对改善脓毒症AKI内皮细胞通透性的作用。结果:对照组与试验组的APACHE II评分、SOFA评分不具有统计学意义(P > 0.05);与对照组相比,治疗0小时对照组Ang-1浓度与试验组相比无统计学差异(P = 0.121),4小时及12小时检测Ang-1浓度显著高于对照组,且存在统计学差异(P < 0.05);试验组SDC-1浓度在0小时、4小时、12小时均不具有统计学差异,但是,与对照组相比,试验组4小时、12小时的SDC-1的浓度呈下降趋势;对照组和试验组的治疗12小时的单位体重液体入量具有统计学意义(P < 0.05)。结论:CRRT对于脓毒症AKI的内皮细胞通透性有改善作用,早期开展CRRT可以优化患者的液体管理。
Objective: To observe the improvement of continuous renal replacement therapy (CRRT) on endothelial permeability in septic acute kidney injury patients. Methods: We included patients with septic AKI defined by the Kidney Disease: Improving Global Outcomes (KDIGO) criteria for AKI and sepsis and by the absence of other clear and established, non-sepsis-related (e.g. radiocontrast, other nephrotoxins) causes of AKI when admitted to the intensive care unit (ICU) from December 2015 to December 2016, totally 29 cases. All patients were randomly divided into control group and treatment group. The Control group was provided with the sepsis bundle therapy and continue renal replacement therapy (CRRT) was initiated in the treatment group on the basis of the sepsis bundle therapy. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of Ang-1 and SDC-1 in plasma of patients with AKI. The effect of CRRT on the improvement of permeability was observed in combination with the changes of clinical parameters. Results: Patients were similar in critical condition. Compared with the control group, the concentrations of Ang-1 of treatment group at the time of 4th h and 12th h are statistically significant (P values are respectively 0.003 and 0.019). Compared with the control group, the concentration of SDC-1 of the treatment group at the time of 0 h, 4th h and 12th h are not statistically significant. P values are respectively 0.715, 0.531 and 0.377, but the concentrations of SDC-1 at the time of 4th h and 12th h are downtrend. Accumulated fluid intake during 12 h per weight are statistically significant (P = 0.023) between control and treatment group. Conclusion: CRRT can improve the permeability of endothelial cells and optimize fluid management in septic AKI.

References

[1]  Chen, Y., Qiu, J., Chen, B., et al. (2018) Long Non-Coding RNA NEAT1 Plays an Important Role in Sepsis-Induced Acute Kidney Injury by Targeting miR-204 and Modulating the NF-kappaB Pathway. International Immunopharmacology, 59, 252-260.
https://doi.org/10.1016/j.intimp.2018.03.023
[2]  Bellomo, R., Ronco, C., Kellum, J.A., et al. (2004) Acute Renal Failure—Definition, Outcome Measures, Animal Models, Fluid Therapy and Information Technology Needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Critical Care, 8, R204-R212.
https://doi.org/10.1186/cc2872
[3]  Prowle, J.R. and Bellomo, R. (2015) Sepsis-Associated Acute Kidney Injury: Macrohemodynamic and Microhemodynamic Alterations in the Renal Circulation. Seminars in Nephrology, 35, 64-74.
https://doi.org/10.1016/j.semnephrol.2015.01.007
[4]  Song, J.W., Zullo, J., Lipphardt, M., et al. (2018) Endothelial Glycocalyx—The Battleground for Complications of Sepsis and Kidney Injury. Nephrology Dialysis Transplantation, 33, 203-211.
https://doi.org/10.1093/ndt/gfx076
[5]  Kr?cki, R., Krzemińska-Paku?a, M., Dro?d?, J., et al. (2010) Relationship of Serum Angiogenin, Adiponectin and Resistin Levels with Biochemical Risk Factors and the Angiographic Severity of Three-Vessel Coronary Disease. Cardiology Journal, 17, 599-606.
[6]  Chiang, W.C., Huang, Y.C., Fu, T.I., et al. (2019) Angiopoietin 1 Influences Ischemic Reperfusion Renal Injury via Modulating Endothelium Survival and Regeneration. Molecular Medicine, 25, 5.
https://doi.org/10.1186/s10020-019-0072-7
[7]  Kalagara, T., Moutsis, T., et al. (2018) The Endothelial Glycocalyx Anchors von Willebrand Factor Fibers to the Vascular Endothelium. Blood Advances, 2, 2347-2357.
https://doi.org/10.1182/bloodadvances.2017013995
[8]  Oh, H.J., Shin, D.H., Lee, M.J., et al. (2012) Early Initiation of Continuous Renal Replacement Therapy Improves Patient Survival in Severe Progressive Septic Acute Kidney Injury. Journal of Critical Care, 27, 743.e9-18.
https://doi.org/10.1016/j.jcrc.2012.08.001
[9]  Yoon, B.R., Leem, A.Y., Park, M.S., et al. (2019) Optimal Timing of Initiating Continuous Renal Replacement Therapy in Septic Shock Patients with Acute Kidney Injury. Scientific Reports, 9, Article No. 11981.
https://doi.org/10.1038/s41598-019-48418-4
[10]  Verma, S.K. and Molitoris, B.A. (2015) Renal Endothelial Injury and Microvascular Dysfunction in Acute Kidney Injury. Seminars in Nephrology, 35, 96-107.
https://doi.org/10.1016/j.semnephrol.2015.01.010
[11]  Fani, F., Regolisti, G., Delsante, M., et al. (2018) Recent Advances in the Pathogenetic Mechanisms of Sepsis-Associated Acute Kidney Injury. Journal of Nephrology, 31, 351-359.
https://doi.org/10.1007/s40620-017-0452-4
[12]  Torres, A. (2018) New Insights into the Regulation of Endothelial Lung Permeability in Pneumonia. The Interplay between Angiopoietins 1 and 2. American Journal of Respiratory and Critical Care Medicine, 198, 149-150.
https://doi.org/10.1164/rccm.201802-0377ED
[13]  Brettner, F., von, D.V. and Chappell, D. (2017) The Endothelial Glycocalyx and Perioperative Lung Injury. Current Opinion in Anesthesiology, 30, 36-41.
https://doi.org/10.1097/ACO.0000000000000434
[14]  Tkachenko, E., Rhodes, J.M. and Simons, M. (2005) Syndecans: New Kids on the Signaling Block. Circulation Research, 96, 488-500.
https://doi.org/10.1161/01.RES.0000159708.71142.c8
[15]  Gonzalez, R.E., Ostrowski, S.R., Cardenas, J.C., et al. (2017) Syndecan-1: A Quantitative Marker for the Endotheliopathy of Trauma. Journal of the American College of Surgeons, 225, 419-427.
https://doi.org/10.1016/j.jamcollsurg.2017.05.012
[16]  Wu, F., Peng, Z., Park, P.W., et al. (2017) Loss of Syndecan-1 Abrogates the Pulmonary Protective Phenotype Induced by Plasma after Hemorrhagic Shock. Shock, 48, 340-345.
https://doi.org/10.1097/SHK.0000000000000832
[17]  Murphy, L.S., Wickersham, N., McNeil, J.B., et al. (2017) Endothelial Glycocalyx Degradation Is More Severe in Patients with Non-Pulmonary Sepsis Compared to Pulmonary Sepsis and Associates with Risk of ARDS and Other Organ Dysfunction. Annals of Intensive Care, 7, 102.
https://doi.org/10.1186/s13613-017-0325-y
[18]  Song, J.W., Zullo, J.A., Liveris, D., et al. (2017) Therapeutic Restoration of Endothelial Glycocalyx in Sepsis. Journal of Pharmacology and Experimental Therapeutics, 361, 115-121.
https://doi.org/10.1124/jpet.116.239509
[19]  Ureshi, S.H., Patel, N.N. and Murphy, G.J. (2018) Vascular Endothelial Cell Changes in Postcardiac Surgery Acute Kidney Injury. American Journal of Physiology-Renal Physiology, 314, F726-F735.
https://doi.org/10.1152/ajprenal.00319.2017
[20]  Marechal, X., Favory, R., Joulin, O., et al. (2008) Endothelial Glycocalyx Damage during Endotoxemia Coincides with Microcirculatory Dysfunction and Vascular Oxidative Stress. Shock, 29, 572-576.
https://doi.org/10.1097/shk.0b013e318157e926
[21]  de Melo Bezerra Cavalcante, C.T., Castelo, B.K.M., Pinto, J.V.C., et al. (2016) Syndecan-1 Improves Severe Acute Kidney Injury Prediction after Pediatric Cardiac Surgery. The Journal of Thoracic and Cardiovascular Surgery, 152, 178-186.e2.
https://doi.org/10.1016/j.jtcvs.2016.03.079
[22]  李建国. Starling原理在液体治疗中意义[J]. 中国实用外科杂志, 2015, 35(2): 155-159.
[23]  Woodcock, T.E. and Woodcock, T.M. (2012) Revised Starling Equation and the Glycocalyx Model of Transvascular Fluid Exchange: An Improved Paradigm for Prescribing Intravenous Fluid Therapy. British Journal of Anaesthesia, 108, 384-394.
https://doi.org/10.1093/bja/aer515
[24]  Mehta, D., Ravindran, K. and Kuebler, W.M. (2014) Novel Regulators of Endothelial Barrier Function. American Journal of Physiology-Lung Cellular and Molecular Physiology, 307, L924-935.
https://doi.org/10.1152/ajplung.00318.2014
[25]  Chang, R. and Holcomb, J.B. (2016) Choice of Fluid Therapy in the Initial Management of Sepsis, Severe Sepsis, and Septic Shock. Shock, 46, 17-26.
https://doi.org/10.1097/SHK.0000000000000577
[26]  Prowle, J.R., Kirwan, C.J. and Bellomo, R. (2014) Fluid Management for the Prevention and Attenuation of Acute Kidney Injury. Nature Reviews Nephrology, 10, 37-47.
https://doi.org/10.1038/nrneph.2013.232
[27]  Chappell, D., Bruegger, D., Potzel, J., et al. (2014) Hypervolemia Increases Release of Atrial Natriuretic Peptide and Shedding of the Endothelial Glycocalyx. Critical Care, 18, 538.
https://doi.org/10.1186/s13054-014-0538-5
[28]  Jacob, M., Saller, T., Chappell, D., et al. (2013) Physiological Levels of A-, B- and C-Type Natriuretic Peptide Shed the Endothelial Glycocalyx and Enhance Vascular Permeability. Basic Research in Cardiology, 108, 347.
https://doi.org/10.1007/s00395-013-0347-z
[29]  Thind, G.S., Zanders, S. and Baker, J.K. (2018) Recent Advances in the Understanding of Endothelial Barrier Function and Fluid Therapy. Postgraduate Medical Journal, 94, 289-295.
https://doi.org/10.1136/postgradmedj-2017-135125
[30]  Skube, S.J., Katz, S.A., Chipman, J.G., et al. (2018) Acute Kidney Injury and Sepsis. Surgical Infections, 19, 216-224.
https://doi.org/10.1089/sur.2017.261
[31]  Akcan-Arika, A., Gebhard, D.J., Arnold, M.A., et al. (2017) Fluid Overload and Kidney Injury Score: A Multidimensional Real-Time Assessment of Renal Disease Burden in the Critically Ill Patient. Pediatric Critical Care Medicine, 18, 524-530.
https://doi.org/10.1097/PCC.0000000000001123

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133