|
连续性血液净化对于脓毒症早期血管内皮通透性标志物Ang-1及SDC-1的影响
|
Abstract:
[1] | Chen, Y., Qiu, J., Chen, B., et al. (2018) Long Non-Coding RNA NEAT1 Plays an Important Role in Sepsis-Induced Acute Kidney Injury by Targeting miR-204 and Modulating the NF-kappaB Pathway. International Immunopharmacology, 59, 252-260. https://doi.org/10.1016/j.intimp.2018.03.023 |
[2] | Bellomo, R., Ronco, C., Kellum, J.A., et al. (2004) Acute Renal Failure—Definition, Outcome Measures, Animal Models, Fluid Therapy and Information Technology Needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Critical Care, 8, R204-R212. https://doi.org/10.1186/cc2872 |
[3] | Prowle, J.R. and Bellomo, R. (2015) Sepsis-Associated Acute Kidney Injury: Macrohemodynamic and Microhemodynamic Alterations in the Renal Circulation. Seminars in Nephrology, 35, 64-74.
https://doi.org/10.1016/j.semnephrol.2015.01.007 |
[4] | Song, J.W., Zullo, J., Lipphardt, M., et al. (2018) Endothelial Glycocalyx—The Battleground for Complications of Sepsis and Kidney Injury. Nephrology Dialysis Transplantation, 33, 203-211. https://doi.org/10.1093/ndt/gfx076 |
[5] | Kr?cki, R., Krzemińska-Paku?a, M., Dro?d?, J., et al. (2010) Relationship of Serum Angiogenin, Adiponectin and Resistin Levels with Biochemical Risk Factors and the Angiographic Severity of Three-Vessel Coronary Disease. Cardiology Journal, 17, 599-606. |
[6] | Chiang, W.C., Huang, Y.C., Fu, T.I., et al. (2019) Angiopoietin 1 Influences Ischemic Reperfusion Renal Injury via Modulating Endothelium Survival and Regeneration. Molecular Medicine, 25, 5.
https://doi.org/10.1186/s10020-019-0072-7 |
[7] | Kalagara, T., Moutsis, T., et al. (2018) The Endothelial Glycocalyx Anchors von Willebrand Factor Fibers to the Vascular Endothelium. Blood Advances, 2, 2347-2357. https://doi.org/10.1182/bloodadvances.2017013995 |
[8] | Oh, H.J., Shin, D.H., Lee, M.J., et al. (2012) Early Initiation of Continuous Renal Replacement Therapy Improves Patient Survival in Severe Progressive Septic Acute Kidney Injury. Journal of Critical Care, 27, 743.e9-18.
https://doi.org/10.1016/j.jcrc.2012.08.001 |
[9] | Yoon, B.R., Leem, A.Y., Park, M.S., et al. (2019) Optimal Timing of Initiating Continuous Renal Replacement Therapy in Septic Shock Patients with Acute Kidney Injury. Scientific Reports, 9, Article No. 11981.
https://doi.org/10.1038/s41598-019-48418-4 |
[10] | Verma, S.K. and Molitoris, B.A. (2015) Renal Endothelial Injury and Microvascular Dysfunction in Acute Kidney Injury. Seminars in Nephrology, 35, 96-107. https://doi.org/10.1016/j.semnephrol.2015.01.010 |
[11] | Fani, F., Regolisti, G., Delsante, M., et al. (2018) Recent Advances in the Pathogenetic Mechanisms of Sepsis-Associated Acute Kidney Injury. Journal of Nephrology, 31, 351-359. https://doi.org/10.1007/s40620-017-0452-4 |
[12] | Torres, A. (2018) New Insights into the Regulation of Endothelial Lung Permeability in Pneumonia. The Interplay between Angiopoietins 1 and 2. American Journal of Respiratory and Critical Care Medicine, 198, 149-150.
https://doi.org/10.1164/rccm.201802-0377ED |
[13] | Brettner, F., von, D.V. and Chappell, D. (2017) The Endothelial Glycocalyx and Perioperative Lung Injury. Current Opinion in Anesthesiology, 30, 36-41. https://doi.org/10.1097/ACO.0000000000000434 |
[14] | Tkachenko, E., Rhodes, J.M. and Simons, M. (2005) Syndecans: New Kids on the Signaling Block. Circulation Research, 96, 488-500. https://doi.org/10.1161/01.RES.0000159708.71142.c8 |
[15] | Gonzalez, R.E., Ostrowski, S.R., Cardenas, J.C., et al. (2017) Syndecan-1: A Quantitative Marker for the Endotheliopathy of Trauma. Journal of the American College of Surgeons, 225, 419-427.
https://doi.org/10.1016/j.jamcollsurg.2017.05.012 |
[16] | Wu, F., Peng, Z., Park, P.W., et al. (2017) Loss of Syndecan-1 Abrogates the Pulmonary Protective Phenotype Induced by Plasma after Hemorrhagic Shock. Shock, 48, 340-345. https://doi.org/10.1097/SHK.0000000000000832 |
[17] | Murphy, L.S., Wickersham, N., McNeil, J.B., et al. (2017) Endothelial Glycocalyx Degradation Is More Severe in Patients with Non-Pulmonary Sepsis Compared to Pulmonary Sepsis and Associates with Risk of ARDS and Other Organ Dysfunction. Annals of Intensive Care, 7, 102. https://doi.org/10.1186/s13613-017-0325-y |
[18] | Song, J.W., Zullo, J.A., Liveris, D., et al. (2017) Therapeutic Restoration of Endothelial Glycocalyx in Sepsis. Journal of Pharmacology and Experimental Therapeutics, 361, 115-121. https://doi.org/10.1124/jpet.116.239509 |
[19] | Ureshi, S.H., Patel, N.N. and Murphy, G.J. (2018) Vascular Endothelial Cell Changes in Postcardiac Surgery Acute Kidney Injury. American Journal of Physiology-Renal Physiology, 314, F726-F735.
https://doi.org/10.1152/ajprenal.00319.2017 |
[20] | Marechal, X., Favory, R., Joulin, O., et al. (2008) Endothelial Glycocalyx Damage during Endotoxemia Coincides with Microcirculatory Dysfunction and Vascular Oxidative Stress. Shock, 29, 572-576.
https://doi.org/10.1097/shk.0b013e318157e926 |
[21] | de Melo Bezerra Cavalcante, C.T., Castelo, B.K.M., Pinto, J.V.C., et al. (2016) Syndecan-1 Improves Severe Acute Kidney Injury Prediction after Pediatric Cardiac Surgery. The Journal of Thoracic and Cardiovascular Surgery, 152, 178-186.e2. https://doi.org/10.1016/j.jtcvs.2016.03.079 |
[22] | 李建国. Starling原理在液体治疗中意义[J]. 中国实用外科杂志, 2015, 35(2): 155-159. |
[23] | Woodcock, T.E. and Woodcock, T.M. (2012) Revised Starling Equation and the Glycocalyx Model of Transvascular Fluid Exchange: An Improved Paradigm for Prescribing Intravenous Fluid Therapy. British Journal of Anaesthesia, 108, 384-394. https://doi.org/10.1093/bja/aer515 |
[24] | Mehta, D., Ravindran, K. and Kuebler, W.M. (2014) Novel Regulators of Endothelial Barrier Function. American Journal of Physiology-Lung Cellular and Molecular Physiology, 307, L924-935.
https://doi.org/10.1152/ajplung.00318.2014 |
[25] | Chang, R. and Holcomb, J.B. (2016) Choice of Fluid Therapy in the Initial Management of Sepsis, Severe Sepsis, and Septic Shock. Shock, 46, 17-26. https://doi.org/10.1097/SHK.0000000000000577 |
[26] | Prowle, J.R., Kirwan, C.J. and Bellomo, R. (2014) Fluid Management for the Prevention and Attenuation of Acute Kidney Injury. Nature Reviews Nephrology, 10, 37-47. https://doi.org/10.1038/nrneph.2013.232 |
[27] | Chappell, D., Bruegger, D., Potzel, J., et al. (2014) Hypervolemia Increases Release of Atrial Natriuretic Peptide and Shedding of the Endothelial Glycocalyx. Critical Care, 18, 538. https://doi.org/10.1186/s13054-014-0538-5 |
[28] | Jacob, M., Saller, T., Chappell, D., et al. (2013) Physiological Levels of A-, B- and C-Type Natriuretic Peptide Shed the Endothelial Glycocalyx and Enhance Vascular Permeability. Basic Research in Cardiology, 108, 347.
https://doi.org/10.1007/s00395-013-0347-z |
[29] | Thind, G.S., Zanders, S. and Baker, J.K. (2018) Recent Advances in the Understanding of Endothelial Barrier Function and Fluid Therapy. Postgraduate Medical Journal, 94, 289-295. https://doi.org/10.1136/postgradmedj-2017-135125 |
[30] | Skube, S.J., Katz, S.A., Chipman, J.G., et al. (2018) Acute Kidney Injury and Sepsis. Surgical Infections, 19, 216-224.
https://doi.org/10.1089/sur.2017.261 |
[31] | Akcan-Arika, A., Gebhard, D.J., Arnold, M.A., et al. (2017) Fluid Overload and Kidney Injury Score: A Multidimensional Real-Time Assessment of Renal Disease Burden in the Critically Ill Patient. Pediatric Critical Care Medicine, 18, 524-530. https://doi.org/10.1097/PCC.0000000000001123 |