全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于正负磁极子相互作用的统一相位场论与实验数据分析
Unified Phase Field Theory Based on the Interactions between Positive and Negative Magnetic Poles and Experimental Data Analysis

DOI: 10.12677/MP.2020.104007, PP. 61-72

Keywords: 正负磁极子,相互作用,统一相位场论,曲率张量方程
Positive and Negative Magnetic Poles
, Interactions, Unified Phase Field Theory, Curvature Tensor Equation

Full-Text   Cite this paper   Add to My Lib

Abstract:

近百年来,许多物理学家对“爱因斯坦场方程”、“量子场论”、“V-A”理论、“规范场论”、“量子电动力学”、“量子色动力学”、“标准模型”,以及“弦理论”等,进行了广泛而深入地研究,为研究自然界四种基本力的统一提供了学术思想和实验数据。本文提出基本粒子是由正负磁极子相互作用构成的磁量子场这一假设,试图论述基于正负磁极子相互作用的统一相位场理论,建立统一相位场曲率张量方程,并运用相关实验数据进行检验,真正实现电磁力、强力、弱力和引力的统一。引力、电磁力、强力和弱力,皆因正负磁极子相互作用而产生,是正负磁极子相互作用的四种表现形式。粒子磁极子场(引力场)对其磁极子的凝聚力为引力,粒子磁极子场在外场(引力场)中的自旋力为电磁力,中子和质子的正性磁极子环同轴自旋的结合力为强力,中子的外层正性磁极子环的衰变为弱力。
In the past hundred years, many physicists conducted extensive and in-depth research on “Einstein’s field equation”, “Quantum field theory”, “V-A” theory, “Gauge field theory”, “Quantum electrodynamics”, “Quantum chromodynamics”, “Standard models” and “String theory”, and provided academic ideas and experimental data for studying the unification of four fundamental forces in nature. This paper proposes a hypothesis that the elementary particles is the magnetic quantum field composed of the interactions between positive and negative magnetic poles, and attempts to discuss the unified phase field theory based on the interactions between positive and negative magnetic poles, and establishes the curvature tensor equation of unified phase field, and tests theory and curvature tensor equation of unified phase field with relevant experimental data, and thus really achieves the unification of electromagnetic force, strong force, weak force and gravitational force. The gravitational force, electromagnetic force, strong force and weak force are all produced from the interactions of positive and negative magnetic poles, which are the four kinds of forms of the interactions between positive and negative magnetic poles. The cohesive force of elementary particle’s magnetic poles field (Gravitational field) to its magnetic poles is the gravitational force. The spin force of elementary particle’s magnetic poles field in external field (Gravitational field) is the electromagnetic force. The binding force of positive magnetic poles ring coaxial spin in neutron and proton is the strong force. The decline of neutron’s outer positive magnetic poles ring is the weak force.

References

[1]  Einstein, A. (1923) The Theory of the Affine Field. Einstein Anthology, 2, 448-452.
https://doi.org/10.1038/112448a0
[2]  Dirac, P.A.M. (1927) The Quantum Theory of the Emission and Absorption of Radiation. Proceedings of the Royal Society of London. Series A, 114, 243-265.
https://doi.org/10.1098/rspa.1927.0039
[3]  Dirac, P. (1931) Quantised Singularities in the Electromagnetic Field. Proceedings of the Royal Society of London. Series A, 133, 60-72.
https://doi.org/10.1098/rspa.1931.0130
[4]  Fermi, E. (1934) An Attempt of a Theory of Beta Radiation. Zeitschrift für Physik, 88, 161-177.
https://doi.org/10.1007/BF01351864
[5]  Yang, C.N. and Mills, R.L. (1954) Isotopic Spin Conservation and Generalized Gauge Invariance. The Physical Review, 95, 631.
[6]  Schwinger, J. (1957) A Theory of the Fundamental Interactions. Annals of Physics, 2, 34.
https://doi.org/10.1016/0003-4916(57)90015-5
[7]  Weinberg, S. (1967) A Model of Leptons. Physical Review Letters, 19, 1264.
https://doi.org/10.1103/PhysRevLett.19.1264
[8]  Clark, A.G. (1983) Latest Results from the UA2 Experiment at the CERN Anti-p p Collider: Hadron Jets, W → e nu, Z0 → e+e?. 1st Asia-Pacific Physics Conference, Vol. 1, 135-180.
[9]  Gross, D.J. and Wilczek, F. (1973) Ultraviolet Behavior of Non-Abelian Gauge Theories. Physical Review Letters, 30, 1343.
https://doi.org/10.1103/PhysRevLett.30.1343
[10]  Barber, D.P., Becker, U., Benda, H., et al. (1979) Discovery of Three-Jet Events and a Test of Quantum Chromodynamics at PETRA. Physical Review Letters, 43, 830.
[11]  Veaneziano, G. (1968) Nuovo Cim, 57A, 190.
[12]  Nambu, Y. (1969) Quark Model and the Factorization of the Veneziano Model Amplitude. Proceedings of the International Conference on Symmetries and Quark Models, Detroit, 18-20 June 1969, 269.
[13]  Ramond, P. (1971) Dual Theory for Free Fermions. Physical Review D, 3, 2415-2418.
https://doi.org/10.1103/PhysRevD.3.2415
[14]  Neveu, A. and Schwarz, J.H. (1971) Nucl. Phys. B, 31, 86.
[15]  Wu, X.J. and Wu, X. (2018) Particle Wave Function and Experimental Analysis Based on Relativity Theory. Modern Physics, 78, 185-197.
[16]  Gauss, C.F. (1828) Disquisitiones Generales Circa Superficies Curvas. Vol. 1. Typis Dieterichianis, G?ttingen.
[17]  Riemann, B. (1854) Ueber die Hypothesen. Welche der Geometrie zu Grundeliegen. Springer, Berlin.
[18]  Riemann, B. (2016) On the Hypotheses Which Lie at the Bases of Geometry. Translated by William Kingdon Clifford, Birkh?user, Basel.
[19]  Christoffel, E.B. (1869) Ueber ein die Transformation homogener Differentialausdrücke zweiten Grades betreffendes Theorem. Journal fur die Reine und Angewandte Mathematik, 1869, 241-245.
https://doi.org/10.1515/crll.1869.70.241
[20]  Levi-Civita, M.T. (1916) Nozione di parallelismo in una varieta qualunque e conseguente specificazione geometrica della curvatura Riemanniana. Rendiconti del Circolo Matematico di Palermo (1884-1940), 42, 173-204.
https://doi.org/10.1007/BF03014898
[21]  Ricci, M.M.G. and Levi-Civita, T. (1900) Méthodes de calcul différentiel absolu et leurs applications. Mathematische Annalen, 54, 125-201.
https://doi.org/10.1007/BF01454201
[22]  Ricci, M.M.G. (1886) Sui parametri e gli invarianti delle forme quadratiche differenziali. Annali di Matematica Pura ed Applicata, 14, 1-11.
https://doi.org/10.1007/BF02420723
[23]  Einstein, A. (1916) The Foundation of the General Theory of Relativity. Annalen der Physik, 49, 769-822.
https://doi.org/10.1002/andp.19163540702
[24]  Einstein, A., 著. 范岱年, 赵中立, 许良英, 编译. 用广义相对论解释水星近日点运动[M]. 北京: 商务印书馆,《爱因斯坦文集》第二卷, 1915: 268-277.
[25]  Einstein, A. (1919) Do Gravitation Fields Play an Essential Role in the Structure of Elementary Particles? Sitzungs- berichte der Koniglich Preussischen Akademie der Wissenschaften, 349-356.
[26]  Fritzsch, H., Gell-Mann, M. and Leutwyler, H. (1973) Advantages of the Color Octet Gluon Picture. Physics Letters B, 47, 365-368.
https://doi.org/10.1016/0370-2693(73)90625-4
[27]  Andreyev, A.N., Nishio, K. and Schmidt, K.H. (2017) Nuclear Fission: A Review of Experimental Advances and Phenomenology. Reports on Progress in Physics, 81, Article ID: 016301.
https://doi.org/10.1088/1361-6633/aa82eb
[28]  Wagemans, C. (1991) The Nuclear Fission Process. CRC Press, Boca Raton.
[29]  Lise, M. (1945) An Attempt to Single Out Some Fission Processes of Uranium by Using the Differences in Their Energy Release. Reviews of Modern Physics, 17, 287-291.
https://doi.org/10.1103/RevModPhys.17.287
[30]  Bohr, N. and Wheeler, J.A. (1939) The Mechanism of Nuclear Fission. Physical Review, 56, 426.
https://doi.org/10.1103/PhysRev.56.426
[31]  Meitner, L. and Frisch, O.R. (1939) Disintegration of Uranium by Neutrons: A New Type of Nuclear Reaction. Nature, 143, 239-240.
https://doi.org/10.1038/143239a0
[32]  Bertsch, G.F., Loveland, W., Nazarewicz, W. and Talou, P. (2015) Benchmarking Nuclear Fission Theory. Journal of Physics G Nuclear and Particle Physics, 42, Article ID: 077001.
https://doi.org/10.1088/0954-3899/42/7/077001
[33]  Lutz, B., Beate, B., et al. (2017) Status of the Karlsruhe Tritium Neutrino Mass Experiment Katrin. Fusion Science and Technology, 71, 485-490.
https://doi.org/10.1080/15361055.2017.1291241
[34]  Gerhard, H. (1937) Atomic Spectra and Atomic Structure. Prentice Hall, Upper Saddle River.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133