全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Finance  2020 

基于LSTM的量化股票预测
LSTM Based Quantitative Stock Forecasting

DOI: 10.12677/FIN.2020.104037, PP. 366-373

Keywords: 特征量化,LSTM,沪深300,涨跌幅预测
Characteristic Quantification
, LSTM, Shanghai and Shenzhen 300, Forecast of Increase or Decrease

Full-Text   Cite this paper   Add to My Lib

Abstract:

股票特征通常夹杂较多噪声数据,而带噪数据会影响股票预测模型的预测精度。本文提出一种对股票数据特征进行量化编码的方法,并使用长短期记忆网络构建预测模型,对量化后的数据进行预测。数据集采用沪深300成分股,在对股票数据量化后进行3分类涨跌幅预测。实验结果表明,使用量化编码对股票特征处理后,预测效果优于使用原始数据预测。
The features of stock are usually mixed with many noise data, and noisy data will affect the predic-tion accuracy of stock prediction model. In this paper, a quantitative coding method for stock data features is proposed, and a prediction model is constructed by using short and long term memory network to predict the quantified data. The data set uses the Shanghai and Shenzhen 300 compo-nent stocks, after the stock data quantification carries on the 3 classification rise and fall forecast. The experimental results show that the prediction effect is better than that of the original data after the stock feature is processed by quantitative coding.

References

[1]  刘长虎, 陶建格, 崔衍秋. 股票价格指数的投资功能[J]. 市场论坛, 2004(3): 71-72.
[2]  丁玮珂. 基于ARMA模型预测股票价格的实证分析[J]. 广西质量监督导报, 2019(5): 151-153.
[3]  高雯. 基于支持向量机参数优化算法的股票智能投顾策略研究[D]: [硕士学位论文]. 上海: 上海师范大学, 2018.
[4]  Lai, R.K., Fan, C.Y., Huang, W.H., et al. (2009) Evolving and Clustering Fuzzy Decision Tree for Financial Time Series Data Forecasting. Expert Systems with Applications, 36, 3761-3773.
https://doi.org/10.1016/j.eswa.2008.02.025
[5]  王禹. 基于Cart树和Boosting算法的股票预测模型[D]: [硕士学位论文]. 哈尔滨: 哈尔滨理工大学, 2018.
[6]  邓凤欣. LSTM神经网络在股票价格趋势预测上的应用[D]: [硕士学位论文]. 广州: 广东外语外贸大学, 2018.
[7]  吴贻鼎, 朱翔, 黄继瑜, 明海山. 基于神经网络的证券市场预测[J]. 计算机应用, 2002(5): 31-33.
[8]  唐勇, 洪晓梅, 朱鹏飞. 投资者情绪与股票价格之间的信息溢出效应研究——基于行业差异视角[J]. 武汉金融, 2019(9): 49-57.
[9]  阎平凡, 张长水. 人工神经网络与模拟进化计算[M]. 北京: 清华大学出版社, 1900.
[10]  Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986) Learning Representations by Back-Propagating Errors. Nature, 323, 533-536.
https://doi.org/10.1038/323533a0
[11]  Chung, J., Gulcehre, C., Cho, K., et al. (2015) Gated Feedback Recurrent Neural Networks. 32nd International Conference on Machine Learning, 2067-2075.
[12]  Bengio, Y. (1994) Learning Long-Term Dependencies with Gradient Descent Is Difficult. IEEE Transactions on Neural Networks, 5, 157-166.
https://doi.org/10.1109/72.279181
[13]  Hochreiter, S. and Schmidhuber, J. (1997) Long Short-Term Memory. Neural Computation, 9, 1735-1780.
https://doi.org/10.1162/neco.1997.9.8.1735

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133