|
Finance 2020
基于LSTM的量化股票预测
|
Abstract:
股票特征通常夹杂较多噪声数据,而带噪数据会影响股票预测模型的预测精度。本文提出一种对股票数据特征进行量化编码的方法,并使用长短期记忆网络构建预测模型,对量化后的数据进行预测。数据集采用沪深300成分股,在对股票数据量化后进行3分类涨跌幅预测。实验结果表明,使用量化编码对股票特征处理后,预测效果优于使用原始数据预测。
The features of stock are usually mixed with many noise data, and noisy data will affect the predic-tion accuracy of stock prediction model. In this paper, a quantitative coding method for stock data features is proposed, and a prediction model is constructed by using short and long term memory network to predict the quantified data. The data set uses the Shanghai and Shenzhen 300 compo-nent stocks, after the stock data quantification carries on the 3 classification rise and fall forecast. The experimental results show that the prediction effect is better than that of the original data after the stock feature is processed by quantitative coding.
[1] | 刘长虎, 陶建格, 崔衍秋. 股票价格指数的投资功能[J]. 市场论坛, 2004(3): 71-72. |
[2] | 丁玮珂. 基于ARMA模型预测股票价格的实证分析[J]. 广西质量监督导报, 2019(5): 151-153. |
[3] | 高雯. 基于支持向量机参数优化算法的股票智能投顾策略研究[D]: [硕士学位论文]. 上海: 上海师范大学, 2018. |
[4] | Lai, R.K., Fan, C.Y., Huang, W.H., et al. (2009) Evolving and Clustering Fuzzy Decision Tree for Financial Time Series Data Forecasting. Expert Systems with Applications, 36, 3761-3773. https://doi.org/10.1016/j.eswa.2008.02.025 |
[5] | 王禹. 基于Cart树和Boosting算法的股票预测模型[D]: [硕士学位论文]. 哈尔滨: 哈尔滨理工大学, 2018. |
[6] | 邓凤欣. LSTM神经网络在股票价格趋势预测上的应用[D]: [硕士学位论文]. 广州: 广东外语外贸大学, 2018. |
[7] | 吴贻鼎, 朱翔, 黄继瑜, 明海山. 基于神经网络的证券市场预测[J]. 计算机应用, 2002(5): 31-33. |
[8] | 唐勇, 洪晓梅, 朱鹏飞. 投资者情绪与股票价格之间的信息溢出效应研究——基于行业差异视角[J]. 武汉金融, 2019(9): 49-57. |
[9] | 阎平凡, 张长水. 人工神经网络与模拟进化计算[M]. 北京: 清华大学出版社, 1900. |
[10] | Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986) Learning Representations by Back-Propagating Errors. Nature, 323, 533-536. https://doi.org/10.1038/323533a0 |
[11] | Chung, J., Gulcehre, C., Cho, K., et al. (2015) Gated Feedback Recurrent Neural Networks. 32nd International Conference on Machine Learning, 2067-2075. |
[12] | Bengio, Y. (1994) Learning Long-Term Dependencies with Gradient Descent Is Difficult. IEEE Transactions on Neural Networks, 5, 157-166. https://doi.org/10.1109/72.279181 |
[13] | Hochreiter, S. and Schmidhuber, J. (1997) Long Short-Term Memory. Neural Computation, 9, 1735-1780.
https://doi.org/10.1162/neco.1997.9.8.1735 |