全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

燃烧合成法制备碳化硼超细粉的研究
Research of Preparation Boron Carbide Micro Powder by Combustion Synthesis Method

DOI: 10.12677/MEng.2020.72013, PP. 83-91

Keywords: 燃烧合成,B4C超细粉,浸出除杂
Combustion Synthesis
, B4C, Leaching Impurity

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文提出采用燃烧合成法制备超细B4C微米粉的新思路,研究了还原剂镁配入量、氧化硼配入量以及坯样压力对反应的影响。结果表明:2B2O3+C+6Mg=B4C+6MgO体系的绝热温度为2750 K,体系可以进行自蔓延反应;自蔓延燃烧产物主要由MgO、B4C和少量Mg3B2O6相组成;采用盐酸浸出可有效除去MgO和Mg3B2O6得到纯净的B4C相;随着氧化硼配料量增加燃烧产物中Mg3B2O6含量会增加,但产物粒度无明显变化;随镁配料量增加自蔓延产物中MgO含量上升,同时有利于B4C的合成,当Mg过量5%~15%时产品粒度存在最小值;制样压力的增加,可显著细化产品粒度;不同的碳源类型对产品的微观形貌、粒度大小以及产品纯度均存在明显的影响。
This paper presents a new method for the preparation of micron boron carbide powder through combustion synthesis method. In the preset work, the effect of process conditions on the product quality was systematically studied. The results show that: The adiabatic temperature of 2B2O3+C+6Mg=B4C+6MgO system is 2750 K, and the self-propagating reactions can occur spontaneously. Self-propagating reaction product mainly contains MgO, B4C and Mg3B2O6. Hydrochloric acid leaching process can effectively remove the impurity phase MgO and Mg3B2O6, thus pure B4C was obtained. The improvement of B2O3 caused the increase of Mg3B2O6 content in product, and had no significant effect on the product particle size. The improvement of Mg caused the increase of MgO content in product, and was conducive to the synthesis of B4C; when Mg excesses 5% to 15%, the product size exists a minimum value. The increase of sample making pressure can remarkably refine product granularity. Different carbon source types have significant influence on the micromorphology, particle size and purity of the product.

References

[1]  章晓波, 刘宁. 碳化硼材料的性能, 制备与应用[J]. 硬质合金, 2006(2): 120-125.
[2]  Kitamura, J., Usuba, S., Kakudate, Y., et al. (2003) Boron Carbide Coating by Electromagnetically Accelerated Plasma Spraying. Journal of Thermal Spray Technology, 12, 70-76.
https://doi.org/10.1361/105996303770348519
[3]  吴芳, 吕军. 碳化硼陶瓷的制备及应用[J]. 五邑大学学报(自然科学版), 2002(1): 45-49.
[4]  刘维良. 先进陶瓷工艺学[M]. 武汉: 武汉理工大学出版社, 2004.
[5]  贾宝瑞, 秦明礼, 李慧, 等. 碳化硼粉末制备方法的研究进展[J], 材料导报, 2010(9): 32-34.
[6]  于国强, 刘维良, 欧阳瑞丰, 等. 碳热还原法制备碳化硼粉末的工艺研究[J]. 中国陶瓷, 2012, 48(6): 58-59.
[7]  Atasoy, A. (2010) The Aluminothermic Reduction of Boric Acid. International Journal of Refractory Metals & Hard Materials, 28, 616-622.
https://doi.org/10.1016/j.ijrmhm.2010.06.001
[8]  谢洪勇. 机械化学法制备碳化硼及其晶体结构的研究[J]. 上海第二工业大学学报, 2006, 23(2): 122-126.
[9]  Li, S., Zeng, B., Feng, Z., et al. (2010) Effects of Heat Treatment on the Microstructure of Amorphous Boron Carbide Coating Deposited on Graphite Substrates by Chemical Vapor Deposition. Thin Solid Films, 519, 251-258.
https://doi.org/10.1016/j.tsf.2010.08.099
[10]  李蓓, 简敏, 王美玲, 等. 碳化硼粉末的制备方法[J]. 核动力工程, 2012(S2): 110-113.
[11]  葛禹锡, 黄锋, 倪红军, 等. 自蔓延高温合成法制备粉体的研究进展[J]. 热加工工艺, 2012, 41(12): 75-78.
[12]  张化宇, 韩杰才, 王华彬, 等. 气压对自蔓延高温还原合成B4C的影响[J]. 中国有色金属学报, 1999(S1): 190-194.
[13]  张化宇, 韩杰才, 赫晓东, 等. 自蔓延高温合成MgO-B4C微观组织研究[J]. 宇航材料工艺, 2000, 30(2): 25-28.
[14]  Jiang, G., Xu, J., Zhuang, H., et al. (2011) Fabrication of B4C from Na2B4O7+Mg+C by SHS Method. Ceramics International, 37, 1689-1691.
https://doi.org/10.1016/j.ceramint.2010.10.007
[15]  Jiang, G., Xu, J., Zhuang, H., et al. (2009) Combustion of Na2B4O7+Mg+C to Synthesis B4C Powders. Journal of Nuclear Materials, 393, 487-491.
https://doi.org/10.1016/j.jnucmat.2009.07.008

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133