全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

腺相关病毒介导FMRP在成年Fmr1 KO小鼠脑组织中获得性表达
Adeno-Associated Virus-Mediated FMRP Ex-pression in Brain Tissues of Adult Fmr1 KO Mice

DOI: 10.12677/HJBM.2020.104013, PP. 95-101

Keywords: 脆性X综合征,脆性X智力低下蛋白,腺相关病毒
Fragile X Syndrome
, Fragile X Mental Retardation Protein, Adeno-Associated Virus

Full-Text   Cite this paper   Add to My Lib

Abstract:

脆性X综合征(Fragile X syndrome, FXS)是一种智力缺陷和自闭症谱系的单基因遗传疾病。位于Xq27.3染色体的Fmr1基因沉默,造成该基因编码的转录抑制因子FMRP表达缺失,从而导致FXS患者神经系统发育障碍。本研究采用质粒转染293T细胞获取AAV9-FMRP腺相关病毒载体,通过立体定位方法将AAV9-FMRP注射到成年Fmr1 KO小鼠侧脑室。免疫组化检测发现AAV9介导的FMRP可以在Fmr1 KO小鼠海马和顶叶皮层等脑组织中获得性表达;免疫荧光检测发现FMRP定位于小鼠海马神经元胞质。研究结果表明,通过腺相关病毒可以介导FMRP在成年Fmr1 KO小鼠脑组织中获得性表达。
Fragile X syndrome (FXS) is a genetic disease with mental retardation and autism spectrum, caused by the silence of Fmr1 gene on chromosome xq27.3 and the expressing loss of FMRP, which is a transcriptional inhibitor. Silencing of Fmr1 gene leads to developmental disorders of the nervous system in FXS patients. In this study, adeno-associated virus 9-mediated FMRP vector (AAV9-FMRP) was obtained by transfecting 293T cells with plasmids. AAV9-FMRP was injected into the lateral ventricle of adult Fmr1 KO mice stereotactically. Immunohistochemistry assay showed that AAV9-FMRP was able to be expressed in hippocampus and parietal cortex in Fmr1 KO mice, and immunofluorescence assay showed that FMRP expression localized in the cytoplasm of hippocampal neurons. The results indicate that it is feasible to acquire FMRP expression mediated by adeno-associated virus in brain tissues of adult Fmr1 KO mice.

References

[1]  Kidd, S.A., Lachiewicz, A., Barbouth, D., Blitz, R.K., Delahunty, C., McBrien, D., Visootsak, J. and Berry-Kravis, E. (2014) Fragile X Syndrome: A Review of Associated Medical Problems. Pediatrics, 134, 995-1005.
https://doi.org/10.1542/peds.2013-4301
[2]  Heulens, I., et al. (2013) Craniofacial Characteristics of Fragile X syndrome in Mouse and Man. European Journal of Human Genetics, 21, 816-823.
https://doi.org/10.1038/ejhg.2012.265
[3]  Sutcliffe, J.S., Nelson, D.L., Zhang, F.P., Pieretti, M., Thomas Caskey, C., Saxe, D. and Warren, S.T. (1992) DNA Methylation Represses FMR-1 Transcription in Fragile X Syndrome. Human Molecular Genetics, 1, 397-400.
https://doi.org/10.1093/hmg/1.6.397
[4]  Coffee, B., Zhang, F.P., Ceman, S., Warren, S.T. and Reines, D. (2002) Histone Modifications Depict an Aberrantly Heterochromatinized FMR1 Gene in Fragile X Syndrome. The American Journal of Human Genetics, 71, 923-932.
https://doi.org/10.1086/342931
[5]  Greenblatt, E.J. and Spradling, A.C. (2018) Fragile X Mental Retardation 1 Gene Enhances the Translation of Large Autism-Related Proteins. Science, 361, 709-712.
https://doi.org/10.1126/science.aas9963
[6]  Zhou, L.T., et al. (2017) A Novel Role of Fragile X Mental Retardation Protein in Pre-mRNA Alternative Splicing through RNA-Binding Protein 14. Neuroscience, 349, 64-75.
https://doi.org/10.1016/j.neuroscience.2017.02.044
[7]  Dahlhaus, R. (2018) Of Men and Mice: Modeling the Fragile X Syndrome. Frontiers in Molecular Neuroscience, 11, 41.
https://doi.org/10.3389/fnmol.2018.00041
[8]  Kazdoba, T.M., et al. (2014) Modeling Fragile X Syndrome in the Fmr1 Knockout Mouse. Intractable & Rare Diseases Research, 3, 118-133.
https://doi.org/10.5582/irdr.2014.01024
[9]  Sehara, Y., Fujimoto, K.-I., Ikeguchi, K., Katakai, Y., Ono, F., Takino, N., Ito, M., Ozawa, K. and Muramatsu, S.I. (2017) Persistent Expression of Dopamine-Synthesizing Enzymes 15 Years after Gene Transfer in a Primate Model of Parkinson’s Disease. Human Gene Therapy Clinical Development, 28, 74-79.
https://doi.org/10.1089/humc.2017.010
[10]  Marks Jr., W.J., Baumann, T.L., Bartus, R.T. and the CERE-120 Study Group (2016) Long-Term Safety of Patients with Parkinson’s Disease Receiving rAAV2-Neurturin (CERE-120) Gene Transfer. Human Gene Therapy, 27, 522-527.
https://doi.org/10.1089/hum.2015.134
[11]  Zeier, Z., Kumar, A., Bodhinathan, K., Feller, J.A., Foster, T.C. and Bloom, D.C. (2009) Fragile X Mental Retardation Protein Replacement Restores Hippocampal Synaptic Function in a Mouse Model of Fragile X Syndrome. Gene Therapy, 16, 1122-1129.
https://doi.org/10.1038/gt.2009.83
[12]  Gholizadeh, S., Arsenault, J., Xuan, I.C.Y., Pacey, L.K. and Hampson, D.R. (2014) Reduced Phenotypic Severity Following Adeno-Associated Virus-Mediated Fmr1 Gene Delivery in Fragile X Mice. Neuropsychopharmacology, 39, 3100-3111.
https://doi.org/10.1038/npp.2014.167
[13]  Foust, K.D., Nurre, E., Montgomery, C.L., Hernandez, A., Chan, C.M. and Kaspar, B.K. (2009) Intravascular AAV9 Preferentially Targets Neonatal Neurons and Adult Astrocytes. Nature Biotechnology, 27, 59-65.
https://doi.org/10.1038/nbt.1515
[14]  Kalesnykas, G., et al. (2017) Comparative Study of Adeno-Associated Virus, Adenovirus, Bacu lovirus and Lentivirus Vectors for Gene Therapy of the Eyes. Current Gene Therapy, 17, 235-247.
https://doi.org/10.2174/1566523217666171003170348
[15]  Klein, R.L., Dayton, R.D., Leidenheimer, N.J., Jansen, K., Golde, T.E. and Zweig, R.M. (2006) Efficient Neuronal Gene Transfer with AAV8 Leads to Neurotoxic Levels of Tau or Green Fluorescent Proteins. Molecular Therapy, 13, 517-527.
https://doi.org/10.1016/j.ymthe.2005.10.008
[16]  Bey, K., Ciron, C., Dubreil, L., Deniaud, J., Ledevin, M., Cristini, J., Blouin, V., Aubourg, P. and Colle, M.-A. (2017) Efficient CNS Targeting in Adult Mice by Intrathecal Infusion of Single-Stranded AAV9-GFP for Gene Therapy of Neurological Disorders. Gene Therapy, 24, 325-332.
https://doi.org/10.1038/gt.2017.18
[17]  Hampson, D.R., Hooper, A.W.M. and Niibori, Y. (2019) The Application of Adeno-Associated Viral Vector Gene Therapy to the Treatment of Fragile X Syndrome. Brain Sciences, 9, 32.
https://doi.org/10.3390/brainsci9020032

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133