全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类散度型椭圆方程的霍普夫引理
Hopf’s Lemma for a Class of Elliptic Equations of Divergence Type

DOI: 10.12677/PM.2020.109100, PP. 862-865

Keywords: 椭圆偏微分方程,散度型,霍普夫引理,正解
Elliptic Partial Differential Equation
, Divergence, Hopf’s Lemma, Positive Solution

Full-Text   Cite this paper   Add to My Lib

Abstract:

极值原理是椭圆偏微分方程的基本性质之一,线性椭圆偏微分方程具有强极值原理,其证明依赖于霍普夫引理。本文得到一类散度型椭圆方程的霍普夫引理。
The Maximum Principle is one of the basic properties of elliptic partial differential equations. Linear elliptic partial differential equations have strong maximum principle, whose proof depends on Hopf’s lemma. This paper obtains Hopf’s lemma for a class of divergence elliptic equations.

References

[1]  保继光, 朱汝金. 偏微分方程[M]. 北京: 北京师范大学出版社, 2011: 120.
[2]  Han, Q. and Lin, F.H. (2011) El-liptic Partial Differential Equations. American Mathematical Society, 21-27.
[3]  Finn, R. and Gilbarg, D. (1957) Asymptotic Behavior and Uniqueness of Plane Subsonic Flows. Communications on Pure and Applied Mathematics, 10, 23-63.
https://doi.org/10.1002/cpa.3160100102
[4]  de Lis, S. and José, C. (2015) Hopf Maximum Principle Revisited. Electronic Journal of Differential Equations, 115, 1-9.
[5]  Gilbarg, D. and Trudinger, N.S. (1983) Elliptic Partial Differential Equations of Second Order. Springer Verlag.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133