|
血管化在骨组织工程的作用及其相关影响因素探讨
|
Abstract:
近年来,随着骨组织工程研究的逐步深入,发现血管化是骨缺损疾病愈合的关键。骨缺损修复的过程中,血管的生长及血管网的建立有益于移植部位的血供及营养成分的供给,从而促进骨缺损处骨组织的生长及愈合。本文将对血管化在骨组织工程中的作用及其相关影响因素进行探讨。
In recent years, with the development of bone tissue engineering, it has been found that vasculari-zation is the key to bone defect healing. In the process of bone defect repair, the growth of blood vessels and the establishment of vascular network are beneficial to the blood supply and nutrient supply of the graft site, so as to promote the growth and healing of bone tissue at the bone defect site. This paper will discuss the role of vascularization in bone tissue engineering and its related in-fluencing factors.
[1] | 赵天源, 孙红. 骨组织工程支架材料及其血管化的研究进程[J]. 中国组织工程研究, 2013, 17(38): 6832-6838. |
[2] | 李海艳, 邹柳, 申利贤, 等. 支架、细胞、因子: 组织工程血管化策略的研究与前景[J]. 中国组织工程研究, 2017, 21(14): 2259-2265. |
[3] | 李婧, 王怀明. 修饰生物材料促进骨组织工程血管化研究进展[J]. 医学综述, 2019, 25(2): 258-263. |
[4] | Brey, E.M., Uriel, S., Greisler, H.P. and Mclntire, L.V. (2005) Therapeutic Neovascularization: Contributions from Bioengineering. Tissue Engineering, 11, 567-584. https://doi.org/10.1089/ten.2005.11.567 |
[5] | 杨飞. 新型促血管化骨组织工程支架材料制备及体内外生物学性能评价[D]: [硕士学位论文]. 泸州: 西南医科大学, 2018. |
[6] | 程丽佳, 鄢硕, 时政, 等. 羟基磷灰石/磷酸三钙生物材料植入小鼠体内的血管化过程[J]. 生物医学工程学杂志, 2017, 34(1): 83-86. |
[7] | 张志达, 江晓兵, 沈耿杨, 等. 磷酸钙及硫酸钙支架在骨组织工程中的研究进展[J]. 中国组织工程研究, 2016, 20(8): 1203-1209. |
[8] | Kantaros, A., Chatzidai, N. and Karalekas, D. (2016) 3D Printing-Assisted Design of Scaffold Structures. The International Journal of Advanced Manufacturing Technology, 82, 559-571. https://doi.org/10.1007/s00170-015-7386-6 |
[9] | Bianco, P. (2015) Stem Cells and Bone: A Historical Perspective. Bone, 70, 2-9.
https://doi.org/10.1016/j.bone.2014.08.011 |
[10] | 朱超, 蒋欣泉, 张志愿. 丝蛋白作为骨组织工程支架材料的研究进展[J]. 国际口腔医学杂志, 2010, 37(5): 541-543. |
[11] | 龚明明, 谭丽丽, 杨柯. 骨组织工程支架材料及其力学性能[J]. 材料导报, 2007, 21(10): 43-46+54. |
[12] | 李金雨. 利用羟基磷灰石支架孔隙结构调控血管生长和异位骨形成[D]: [博士学位论文]. 成都: 西南交通大学, 2016. |
[13] | 吕洪磊, 张彩云, 顾玉芳, 等. 羟基磷灰石/壳聚糖/聚乳酸骨组织工程支架材料生物相容性研究[J]. 安徽医科大学学报, 2013, 48(5): 561-564. |
[14] | 乔永军, 翟仲军, 陈丽梅, 等. 具有抗菌性和生物相容性的壳聚糖/羟基磷灰石三维复合材料: 一种具有抗菌能力的骨组织工程支架[J]. 科学通报, 2015, 60(33): 3273. |
[15] | Barre, A., Naudot, M., Colin, F., Sevestre, H., Collet, L., Devauchelle, B., Lack, S., Marolleau, J.P. and Le Ricousse, S. (2020) An Alginate-Based Hydrogel with a High Angiogenic Capacity and a High Osteogenic Potential. BioResearch Open Access, 9, 174-182. https://doi.org/10.1089/biores.2020.0010 |
[16] | Zhang, L., Yang, G.J., Johnson, B.N. and Jia, X.F. (2019) Three-Dimensional (3D) Printed Scaffold and Material Selection for Bone Repair. Acta Biomaterialia, 84, 16-33. https://doi.org/10.1016/j.actbio.2018.11.039 |
[17] | 张迪峰, 余霄, 庞清江. 骨组织工程支架及骨修补材料: 复合型骨移植材料的前景更好[J]. 中国组织工程研究, 2018, 22(26): 4253-4258. |
[18] | Wubneh, A., Tsekoura, E.K., Ayranci, C. and Uluda?, H. (2018) Current State of Fabrication Technologies and Materials for Bone Tissue Engineering. Acta Biomaterialia, 80, 1-30. https://doi.org/10.1016/j.actbio.2018.09.031 |
[19] | Yang, D.W., Xiao, J.Y., Wang, B.Y., Li, L., Kong, X.L. and Liao, J.F. (2019) The Immune Reaction and Degradation Fate of Scaffold in Cartilage/Bone Tissue Engineering. Materials Science and Engineering: C, 104, Article ID: 109927.
https://doi.org/10.1016/j.msec.2019.109927 |
[20] | Melke, J., Midha, S., Ghosh, S., Ito, K. and Hofmann, S. (2016) Silk Fibroin as Biomaterial for Bone Tissue Engineering. Acta Biomaterialia, 31, 1-16. https://doi.org/10.1016/j.actbio.2015.09.005 |
[21] | Preethi Soundarya, S., Haritha Menon, A., Viji Chandran, S. and Selvamurugan, N. (2018) Bone Tissue Engineering: Scaffold Preparation Using Chitosan and Other Biomaterials with Different Design and Fabrication Techniques. International Journal of Biological Macromolecules, 119, 1228-1239. https://doi.org/10.1016/j.ijbiomac.2018.08.056 |
[22] | 魏晨旭, 何怡文, 王聃, 侯婧霞, 谢辉, 殷放宙, 陈志鹏, 李伟东. 组织工程学中骨修复材料的研究热点与进展[J]. 中国组织工程研究, 2020, 24(10): 1615-1621. |
[23] | 彭坤, 李婧, 王斯睿, 等. 可降解血管支架结构设计及优化的研究进展[J]. 中国生物医学工程学报, 2019, 38(3): 367-374. |
[24] | 张健. 成骨细胞与血管内皮细胞联合培养复合肌瓣构建血管化组织工程骨的实验研究[D]: [博士学位论文]. 北京: 中国人民解放军军医进修学院, 2005. |
[25] | 宁钰, 赵红斌. 生物支架材料在骨组织工程中的研究进展[J]. 世界最新医学信息文摘, 2019, 19(46): 105-106. |
[26] | 钱超, 郭杨, 马勇. 骨组织工程中成骨、破骨细胞三维空间培养的研究进展[J]. 安徽医科大学学报, 2014, 49(2): 280-282. |
[27] | Boyan, B.D., Cohen, D.J. and Schwartz, Z. (2017) 7. 17 Bone Tissue Grafting and Tissue Engineering Concepts. In: Ducheyne, P., Ed., Comprehensive Biomaterials II, 2nd Edition, Elsevier, Amsterdam, 298-313.
298-313. https://doi.org/10.1016/B978-0-12-803581-8.10240-1 |
[28] | Spicer, P., Young, S., Kasper, F.K., Athanasiou, K.A., Mikos, A.G. and Wong, M.E.-K. (2014) Tissue Engineering in Oral and Maxillofacial Surgery. In: Lanza, R., Langer, R. and Vacanti, J., Eds., Principles of Tissue Engineering, 4th Edition, Academic Press, Cambridge, 1487-1506. https://doi.org/10.1016/B978-0-12-398358-9.00071-9 |
[29] | 王炜. 带蒂筋膜瓣包裹组织工程骨血管化的实验研究[D]: [硕士学位论文]. 乌鲁木齐: 新疆医科大学, 2011. |
[30] | 张春梅, 田洪玲, 赵洁, 等. 肝素抗凝材料联合血管束植入修复骨缺损的血管化[J]. 中国组织工程研究, 2013, 17(21): 3944-3951. |
[31] | 张迅. VEGF促进兔同种异体骨异位预构骨皮瓣的进程[D]: [硕士学位论文]. 新乡: 新乡医学院, 2016. |