|
常见阴离子对AFm相的生成及转化的影响研究综述
|
Abstract:
[1] | 王绍东, 黄煜镔, 王智. 水泥组分对混凝土固化氯离子能力的影响[J]. 硅酸盐学报, 2000, 28(6): 570-574. |
[2] | Zhou, X., Zhou, M., Wu, X., et al. (2017) Studies of Phase Relations and AFm Solid Solution Formations in the System CaO-Al2O3-CaCl2-CaCrO4-H2O. Applied Geochemistry, 80, 49-57.
https://doi.org/10.1016/j.apgeochem.2017.02.014 |
[3] | Zajac, M., Bremseth, S.K., Whitehead, M., et al. (2014) Effect of CaMg(CO3)2 on Hydrate Assemblages and Mechanical Properties of Hydrated Cement Pastes at 40?C and 60?C. Cement and Concrete Research, 65, 21-29.
https://doi.org/10.1016/j.cemconres.2014.07.002 |
[4] | Machner, A., Zajac, M., Haha, M.B., et al. (2017) Portland Metakaolin Cement Containing Dolomite or Limestone—Similarities and Differences in Phase Assemblage and Compressive Strength. Construction and Building Materials, 157, 214-225. https://doi.org/10.1016/j.conbuildmat.2017.09.056 |
[5] | Larsen, C. (1998) Chloride Binding in Concrete, Effect of Surrounding Environment and Concrete Composition. Ph.D. Thesis, NTNU, Trondheim. |
[6] | Suryavanshi, A., Scantlebury, J. and Lyon, S. (1995) The Binding of Chloride Ions by Sulphate Resistant Portland Cement. Cement and Concrete Research, 25, 581-592. https://doi.org/10.1016/0008-8846(95)00047-G |
[7] | Mehta, P. (1977) Effect of Cement Composition on Corrosion of Reinforcing Steel in Concrete. In: Tonini, D. and Dean, S., Eds., Chloride Corrosion of Steel in Concrete, ASTM International, West Conshohocken, PA, 12-19.
https://doi.org/10.1520/STP27949S |
[8] | Hewlett, P. (2003) Lea’s Chemistry of Cement and Concrete. Butterworth-Heinemann, Oxford. |
[9] | Enevoldsen, J., Hansson, C. and Hope, B. (1994) Binding of Chloride in Mortar Containing Admixed or Penetrated Chlorides. Cement and Concrete Research, 24, 1525-1533. https://doi.org/10.1016/0008-8846(94)90167-8 |
[10] | Glasser, F. (1999) Role of Chemical Binding in Diffusion and Mass Transport. International Conference on Ion and Mass Transport in Cement-Based Materials, Toronto, Canada, 129-154. |
[11] | Balonis, M., Lothenbach, B., Le Saout, G., et al. (2010) Impact of Chloride on the Mineralogy of Hydrated Portland Cement Systems. Cement and Concrete Research, 40, 1009-1022. https://doi.org/10.1016/j.cemconres.2010.03.002 |
[12] | Nehdi, M., Mindess, S. and Pierre-Claude, A. (1996) Optimization of High Strength Limestone Filler Cement Mortars. Cement and Concrete Research, 26, 883-893. https://doi.org/10.1016/0008-8846(96)00071-3 |
[13] | Zhou, M.K., Peng, S.M., Xu, J., et al. (1996) Effect of Stone Powder on Stone Chippings Concrete. Journal of Wuhan University of Technology (Materials Science Edition), 11, 29-34. |
[14] | 刘焕芹, 徐志峰, 李维滨, 等. 石灰石粉对硅酸盐水泥水化的影响[J]. 材料科学与工程学报, 2015, 33(2): 185-188. |
[15] | Scholer, A., Lothenbach, B., Winnefeld, F., et al. (2015) Hydration of Quaternary Portland Cement Blends Containing Blast-Furnace Slag, Siliceous Fly Ash and Limestone Powder. Cement & Concrete Composites, 55, 374-382.
https://doi.org/10.1016/j.cemconcomp.2014.10.001 |
[16] | 周少龙, 郝璟珂, 赵宇, 等. 石灰石微粉对硫铝酸盐水泥水化和性能影响[J]. 广东建材, 2018, 34(10): 37-39. |
[17] | Mindess, S., Young, J.F., Darwin, D., 著. 混凝土[M]. 吴科如, 张雄, 姚武, 等, 译. 北京: 化学工业出版社, 2005: 83. |
[18] | Balonis, M. (2010) The Influence of Inorganic Chemical Accelerators and Corrosion Inhibitors on the Mineralogy of Hydrated Portland Cement Systems. University of Aberdeen, Aberdeen. |
[19] | Falzone, G., Balonis, M. and Sant, G. (2015) X-AFm Stabilization as a Mechanism of Bypassing Conversion Phenomena in Calcium Aluminate Cements. Cement and Concrete Research, 72, 54-68.
https://doi.org/10.1016/j.cemconres.2015.02.022 |
[20] | 戴燕华, 柳俊哲, 邢祥伟, 杨梦娜. 氯离子对水泥净浆内游离态亚硝酸根离子的影响[J]. 绍兴文理学院学报(自然科学), 2018, 38(3): 9-14. |
[21] | Ann, K.Y., Jung, H.S., Kim, H.S., et al. (2006) Effect of Calcium Nitrite-Based Corrosion Inhibitor in Preventing Corrosion of Embedded Steel in Concrete. Cement & Concrete Research, 36, 530-535.
https://doi.org/10.1016/j.cemconres.2005.09.003 |
[22] | Ni, Z.-M., Pan, G.-X., Wang, L.-G., et al. (2006) Structure and Properties of Hydrotalcite Using Electrostatic Potential Energy Model. Chinese Journal of Chemical Physics, 19, 277-280. |
[23] | 冷达, 张雄, 沈中林. 减水剂和早强剂对水泥基灌浆材料性能的影响[J]. 新型建筑材料, 2008, 35(11): 21-25. |
[24] | 王中平, 杨浩宇, 赵亚婷, 徐玲琳. 不同养护温度下氯化钠对铝酸盐水泥水化的影响[J]. 材料导报, 2019, 33(14): 2343-2347. |
[25] | 叶东忠. 早强剂对掺硅灰的水泥砂浆强度与结构影响的研究[J]. 北京工商大学学报(自然科学版), 2009, 27(2): 8-11. |
[26] | 孙志芳. 石灰石粉对水泥基复合材料性能的影响与机理研究[D]: [硕士学位论文]. 石家庄: 石家庄铁道大学, 2018. |
[27] | Alan, R. (2007) Strength Development of Plain Concrete Compared to Concrete with a Non-Chloride Accelerating Admixture. Structural Survey, 25, 418-423. https://doi.org/10.1108/02630800710838455 |
[28] | 姚燕, 王宏霞, 刁桂芝, 刘光华. 硝酸钙对铝酸盐水泥强度及水化性能的影响[J]. 硅酸盐学报, 2019, 47(2): 207-213. |
[29] | 刘红杰, 李九苏, 赵明博, 徐小龙, 唐斌, 范涛涛. 亚硝酸钙对硫铝酸盐水泥水化和强度的影响[J]. 交通科学与工程, 2017, 33(4): 10-13. |