全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

常见阴离子对AFm相的生成及转化的影响研究综述
Influence Research Review on Common Anions on the Formation and Transformation of AFm Phase

DOI: 10.12677/HJCE.2020.97074, PP. 693-698

Keywords: 水泥,水化,AFm相,阴离子
Cement
, Hydration, AFm Phase, Anionic

Full-Text   Cite this paper   Add to My Lib

Abstract:

AFm相是水泥的主要水化产物之一。石灰石粉、混凝土外加剂及水泥基材料的服役环境都可向水泥基材料中引入各种不同的阴离子,对AFm相的生成产生各方面的影响,进而影响水泥基材料的各项性能及耐久性。论文综述了国内外学者近几年来关于几种常见阴离子对AFm相的生成及转化的影响研究,分析总结了Cl、CO32- 、NO3- 和NO2- 对水泥中AFm相的影响规律,提出了一些当前需要深入研究和讨论的问题及方向。
AFm phase is one of the main hydration products of cement. Limestone powder, concrete admixture and cement-based materials can introduce various anions into cement-based materials in the service environment, which will affect the formation of AFm phase in all aspects, and then affect the performance and durability of cement-based materials. In this paper, the influence of several common anions on the formation and transformation of AFm phase in cement is reviewed, and the influence rules of Cl, CO32-, NO3- and NO2- on AFm phase in cement are analyzed and summarized. Some problems and directions that need further study and discussion are proposed.

References

[1]  王绍东, 黄煜镔, 王智. 水泥组分对混凝土固化氯离子能力的影响[J]. 硅酸盐学报, 2000, 28(6): 570-574.
[2]  Zhou, X., Zhou, M., Wu, X., et al. (2017) Studies of Phase Relations and AFm Solid Solution Formations in the System CaO-Al2O3-CaCl2-CaCrO4-H2O. Applied Geochemistry, 80, 49-57.
https://doi.org/10.1016/j.apgeochem.2017.02.014
[3]  Zajac, M., Bremseth, S.K., Whitehead, M., et al. (2014) Effect of CaMg(CO3)2 on Hydrate Assemblages and Mechanical Properties of Hydrated Cement Pastes at 40?C and 60?C. Cement and Concrete Research, 65, 21-29.
https://doi.org/10.1016/j.cemconres.2014.07.002
[4]  Machner, A., Zajac, M., Haha, M.B., et al. (2017) Portland Metakaolin Cement Containing Dolomite or Limestone—Similarities and Differences in Phase Assemblage and Compressive Strength. Construction and Building Materials, 157, 214-225.
https://doi.org/10.1016/j.conbuildmat.2017.09.056
[5]  Larsen, C. (1998) Chloride Binding in Concrete, Effect of Surrounding Environment and Concrete Composition. Ph.D. Thesis, NTNU, Trondheim.
[6]  Suryavanshi, A., Scantlebury, J. and Lyon, S. (1995) The Binding of Chloride Ions by Sulphate Resistant Portland Cement. Cement and Concrete Research, 25, 581-592.
https://doi.org/10.1016/0008-8846(95)00047-G
[7]  Mehta, P. (1977) Effect of Cement Composition on Corrosion of Reinforcing Steel in Concrete. In: Tonini, D. and Dean, S., Eds., Chloride Corrosion of Steel in Concrete, ASTM International, West Conshohocken, PA, 12-19.
https://doi.org/10.1520/STP27949S
[8]  Hewlett, P. (2003) Lea’s Chemistry of Cement and Concrete. Butterworth-Heinemann, Oxford.
[9]  Enevoldsen, J., Hansson, C. and Hope, B. (1994) Binding of Chloride in Mortar Containing Admixed or Penetrated Chlorides. Cement and Concrete Research, 24, 1525-1533.
https://doi.org/10.1016/0008-8846(94)90167-8
[10]  Glasser, F. (1999) Role of Chemical Binding in Diffusion and Mass Transport. International Conference on Ion and Mass Transport in Cement-Based Materials, Toronto, Canada, 129-154.
[11]  Balonis, M., Lothenbach, B., Le Saout, G., et al. (2010) Impact of Chloride on the Mineralogy of Hydrated Portland Cement Systems. Cement and Concrete Research, 40, 1009-1022.
https://doi.org/10.1016/j.cemconres.2010.03.002
[12]  Nehdi, M., Mindess, S. and Pierre-Claude, A. (1996) Optimization of High Strength Limestone Filler Cement Mortars. Cement and Concrete Research, 26, 883-893.
https://doi.org/10.1016/0008-8846(96)00071-3
[13]  Zhou, M.K., Peng, S.M., Xu, J., et al. (1996) Effect of Stone Powder on Stone Chippings Concrete. Journal of Wuhan University of Technology (Materials Science Edition), 11, 29-34.
[14]  刘焕芹, 徐志峰, 李维滨, 等. 石灰石粉对硅酸盐水泥水化的影响[J]. 材料科学与工程学报, 2015, 33(2): 185-188.
[15]  Scholer, A., Lothenbach, B., Winnefeld, F., et al. (2015) Hydration of Quaternary Portland Cement Blends Containing Blast-Furnace Slag, Siliceous Fly Ash and Limestone Powder. Cement & Concrete Composites, 55, 374-382.
https://doi.org/10.1016/j.cemconcomp.2014.10.001
[16]  周少龙, 郝璟珂, 赵宇, 等. 石灰石微粉对硫铝酸盐水泥水化和性能影响[J]. 广东建材, 2018, 34(10): 37-39.
[17]  Mindess, S., Young, J.F., Darwin, D., 著. 混凝土[M]. 吴科如, 张雄, 姚武, 等, 译. 北京: 化学工业出版社, 2005: 83.
[18]  Balonis, M. (2010) The Influence of Inorganic Chemical Accelerators and Corrosion Inhibitors on the Mineralogy of Hydrated Portland Cement Systems. University of Aberdeen, Aberdeen.
[19]  Falzone, G., Balonis, M. and Sant, G. (2015) X-AFm Stabilization as a Mechanism of Bypassing Conversion Phenomena in Calcium Aluminate Cements. Cement and Concrete Research, 72, 54-68.
https://doi.org/10.1016/j.cemconres.2015.02.022
[20]  戴燕华, 柳俊哲, 邢祥伟, 杨梦娜. 氯离子对水泥净浆内游离态亚硝酸根离子的影响[J]. 绍兴文理学院学报(自然科学), 2018, 38(3): 9-14.
[21]  Ann, K.Y., Jung, H.S., Kim, H.S., et al. (2006) Effect of Calcium Nitrite-Based Corrosion Inhibitor in Preventing Corrosion of Embedded Steel in Concrete. Cement & Concrete Research, 36, 530-535.
https://doi.org/10.1016/j.cemconres.2005.09.003
[22]  Ni, Z.-M., Pan, G.-X., Wang, L.-G., et al. (2006) Structure and Properties of Hydrotalcite Using Electrostatic Potential Energy Model. Chinese Journal of Chemical Physics, 19, 277-280.
[23]  冷达, 张雄, 沈中林. 减水剂和早强剂对水泥基灌浆材料性能的影响[J]. 新型建筑材料, 2008, 35(11): 21-25.
[24]  王中平, 杨浩宇, 赵亚婷, 徐玲琳. 不同养护温度下氯化钠对铝酸盐水泥水化的影响[J]. 材料导报, 2019, 33(14): 2343-2347.
[25]  叶东忠. 早强剂对掺硅灰的水泥砂浆强度与结构影响的研究[J]. 北京工商大学学报(自然科学版), 2009, 27(2): 8-11.
[26]  孙志芳. 石灰石粉对水泥基复合材料性能的影响与机理研究[D]: [硕士学位论文]. 石家庄: 石家庄铁道大学, 2018.
[27]  Alan, R. (2007) Strength Development of Plain Concrete Compared to Concrete with a Non-Chloride Accelerating Admixture. Structural Survey, 25, 418-423.
https://doi.org/10.1108/02630800710838455
[28]  姚燕, 王宏霞, 刁桂芝, 刘光华. 硝酸钙对铝酸盐水泥强度及水化性能的影响[J]. 硅酸盐学报, 2019, 47(2): 207-213.
[29]  刘红杰, 李九苏, 赵明博, 徐小龙, 唐斌, 范涛涛. 亚硝酸钙对硫铝酸盐水泥水化和强度的影响[J]. 交通科学与工程, 2017, 33(4): 10-13.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133