全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Co2MnSn薄膜结构调控与自旋热输运性质研究
Structure Regulation and Thermal Spin Transport Properties of Co2MnSn Films

DOI: 10.12677/CMP.2020.93005, PP. 33-41

Keywords: 哈斯勒合金,薄膜,反常能斯特效应,自旋塞贝克效应,热电材料
Heusler Alloy
, Films, Anomalous Nernst Effect, Spin Seebeck Effect, Thermoelectric Material

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文以磁控溅射制备的Co2MnSn薄膜为研究对象,研究了薄膜沉积温度对其反常能斯特效应和自旋塞贝克效应相关特性的影响及其物理机制。研究表明,通过调节沉积温度可以得到B2结构的Co2MnSn薄膜;随着沉积温度的升高,薄膜的磁性和金属性也将得到增强。本文以B2相的Co2MnSn薄膜为对象,重点研究了其在温度梯度下的反常能斯特效应和自旋塞贝克效应。实验发现,常温下,500℃沉积的Co2MnSn薄膜的反常能斯特系数为0.7 μV/K,比常温下Fe,Co,Ni等传统金属(约0.03 μV/K)大20倍。本文研究还进一步表明,通过调节Co2MnSn薄膜的制备温度,可以在一定程度上调控其反常能斯特效应和自旋塞贝克效应,这将有益于热电材料以及热电效应相关设备的研发。
In this paper, Co2MnSn thin films prepared by magnetron sputtering were taken as the research object, and the effect of films deposition temperature on the characteristics of the anomalous Nernst effect and spin Seebeck effect and its physical mechanism were investigated. The research results show that Co2MnSn thin films with B2 structure can be obtained by adjusting the deposition temperature. As the deposition temperature increases, the magnetic and metallic properties of the thin film were enhanced. Taking the B2 phase Co2MnSn thin films as the object, this paper focuses on the anomalous Nernst effect and the spin Seebeck effect under the temperature gradient. The experiment results show that the anomalous Nernst coefficient of Co2MnSn thin film deposited at 500?C is 0.7 μV/K, which is 20 times larger than that of 3 d metals, such as Fe, Co, and Ni. The research in this paper further shows that by controlling the preparation temperature of Co2MnSn thin films, the anomalous Nernst effect and spin Seebeck effect can be adjusted to a certain extent, which will be beneficial to the research and development of thermoelectric materials and thermoelectric effect related equipment.

References

[1]  Zutic, I., Fabian, J. and DasSarma, S. (2004) Spintronics: Fundamentals and Applications. Review of Modern Physics, 76, 323-410.
https://doi.org/10.1103/RevModPhys.76.323
[2]  Jungwirth, T., Wunderlich, J.R. and Oleinik, K. (2012) Spin Hall Effect Devices. Nature Materials, 11, 382-390.
https://doi.org/10.1038/nmat3279
[3]  Ando, K., Takahashi, S. and Ieda, J. (2011) Inverse Spin-Hall Effect In-duced by Spin Pumping in Metallic System. Journal of Applied Physics, 109, Article ID: 103913.
https://doi.org/10.1063/1.3587173
[4]  Bauer, G., Saitoh, E. and Wees, B. (2012) Spin Caloritronics. Nature Materials, 11, 391-399.
https://doi.org/10.1038/nmat3301
[5]  Ikhlas, M., Tomita, T. and Koretsune, T. (2017) Large Anomalous Nernst Effect at Room Temperature in a Chiral Antiferromagnet. Nature Physics, 13, 1085-1090.
https://doi.org/10.1038/nphys4181
[6]  Kannan, H., Fan, X. and Celik, H. (2017) Thickness Dependence of Anomalous Nernst Coefficient and Longitudinal Spin Seebeck Effect in Ferromagnetic NixFe100?x Films. Scientific Re-ports, 7, Article No. 6175.
https://doi.org/10.1038/s41598-017-05946-1
[7]  Uchida, K., Takahashi, S. and Harii, K. (2008) Observation of the Spin Seebeck Effect. Nature, 455, 778-781.
https://doi.org/10.1038/nature07321
[8]  Holanda, J., Alves, S.O. and Cunha, R.O. (2017) Longitudinal Spin Seebeck Effect in Permalloy Separated from the Anomalous Nernst Effect: Theory and Experiment. Physical Review B, 95, Article ID: 214421.
https://doi.org/10.1103/PhysRevB.95.214421
[9]  Chuang, T.C., Su. P.L. and Po-Hsun, W. (2017) Enhancement of the Anomalous Nernst Effect in Ferromagnetic Thin Films. Physical Review B, 96, Article ID: 174406.
https://doi.org/10.1103/PhysRevB.96.174406
[10]  Ando, Y. (2015) Spintronics Technology and Device Devel-opment. Japanese Journal of Applied Physics, 54, Article ID: 10101.
https://doi.org/10.7567/JJAP.54.070101
[11]  Mizuguchi, M. and Nakatsuji, S. (2019) Energy-Harvesting Materials Based on the Anomalous Nernst Effect. Science and Technology of Advanced Materials, 20, 262-275.
https://doi.org/10.1080/14686996.2019.1585143
[12]  Uchida, K.I., Adachi, H. and Kikkawa, T. (2016) Thermo-electric Generation Based on Spin Seebeck Effects. Proceedings of the IEEE, 104, 1946-1973.
https://doi.org/10.1109/JPROC.2016.2535167
[13]  Sakuraba, Y. (2016) Potential of Thermoelectric Power Gen-eration Using Anomalous Nernst Effect in Magnetic Materials. Scripta Materialia, 111, 29-32.
https://doi.org/10.1016/j.scriptamat.2015.04.034
[14]  Rezende, S.M., Rodríguez-Suárez, R.L. and Cunha, R.O. (2016) Bulk Magnon Spin Current Theory for the Longitudinal Spin Seebeck Effect. Journal of Magnetism and Mag-netic Materials, 400, 171-177.
https://doi.org/10.1016/j.jmmm.2015.07.102
[15]  Reichlova, H., Schlitz, R. and Beckert, S. (2018) Large Anom-alous Nernst Effect in Thin Films of the Weyl Semimetal Co2MnGa. Applied Physics Letters, 113, 212405.1-212405.5.
https://doi.org/10.1063/1.5048690
[16]  Sakai, A., Mizuta, Y.P. and Nugroho, A.A. (2018) Giant Anomalous Nernst Effect and Quantum-Critical Scaling in a Ferromagnetic Semimetal. Nature Physics, 14, 1119-1124.
https://doi.org/10.1038/s41567-018-0225-6
[17]  Sakuraba, Y., Hyodo, K. and Sakuma, A. (2018) Strategic En-hancement of Anomalous Nernst Effect in Co2MnAl1?xSix Heusler Compounds. https://arxiv.org/abs/1807.02209
[18]  Graf, T., Claudia, F. and Stuart, S.P.P. (2011) Simple Rules for the Under-standing of Heusler Compounds. Progress in Solid State Chemistry, 39, 1-50.
https://doi.org/10.1016/j.progsolidstchem.2011.02.001
[19]  Geiersbach, U., Bergmann, A. and Westerholt, K. (2002) Structural, Magnetic and Magnetotransport Properties of Thin Films of the Heusler Alloys Cu2MnAl, Co2MnSi, Co2MnGe and Co2MnSn. Journal of Magnetism and Magnetic Materials, 240, 546-549.
https://doi.org/10.1016/S0304-8853(01)00866-6
[20]  Rai, D. and Thapa, R. (2013) Electronic Structure and Magnetic Properties of X2YZ (X = Co, Y = Mn, Z = Ge, Sn) Type Heusler Compounds: A First Principle Study. Phase Transitions, 85, 1-11.
https://doi.org/10.1080/01411594.2012.661860
[21]  Wang, Z., Vergniory, M.G. and Kushwaha, S. (2016) Time-Reversal-Breaking Weyl Fermions in Magnetic Heusler Alloys. Physical Review Letters, 117, Article ID: 236401.
https://doi.org/10.1103/PhysRevLett.117.236401
[22]  Manna, K., Sun, Y. and Muechler, L. (2018) Heusler, Weyl and Berry. Nature Reviews Materials, 3, 244-256.
https://doi.org/10.1038/s41578-018-0036-5
[23]  Balke, B., Ouardi, S. and Graf, T. (2010) Seebeck Coefficients of Half-Metallic Ferromagnets. Solid State Communications, 150, 529-532.
https://doi.org/10.1016/j.ssc.2009.10.044
[24]  Sola, A., Basso, V. and Kuepferling, M. (2019) Spincaloritronic Measurements: A Round Robin Comparison of the Longitudinal Spin Seebeck Effect. IEEE Transactions on Instru-mentation and Measurement, 68, 1765-1773.
https://doi.org/10.1109/TIM.2018.2882930
[25]  Zhang, W., Jiko, N. and Okuno, T. (2007) Structural and Mag-netic Properties of Co2MnSn Films and Co2MnSn/Cr Multilayers. Journal of Magnetism and Magnetic Materials, 309, 132-138.
https://doi.org/10.1016/j.jmmm.2006.06.023

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133