全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

四维变分资料同化中非平衡项方差的流依赖估计
Estimation of Flow-Dependent Unbalanced Variances in Four-Dimensional Variational Data Assimilation

DOI: 10.12677/AG.2020.107063, PP. 637-647

Keywords: 资料同化,背景误差协方差,非平衡项方差,集合四维变分资料同化,流依赖,校正,滤波
Data Assimilation
, Background Error Covariance, Unbalanced Variances, Ensemble Four-Dimensional Variational Data Assimilation, Flow-Dependent, Calibration, Filtering

Full-Text   Cite this paper   Add to My Lib

Abstract:

优化和改进变分资料同化系统中的背景误差协方差模型,使之能够正确反映随流型演变的不确定性信息,是提高中期数值预报精度的重要技术手段。集合四维变分资料同化的一大关键是如何根据自身的背景误差协方差模型提取和应用流依赖背景信息。为了提高变分资料同化解算的效率,通过将某些变量划分为平衡部分和非平衡部分,平衡部分依据平衡约束关系与一个特定的变量相联系,剩余的非平衡部分在各变量间互不相关。随着数值预报模式的不断优化,非平衡方差在总方差中的影响越来越重要。本文介绍了YH4DVAR的背景误差协方差模型和集合四维变分资料同化系统架构,重点分析了平衡算子。通过集合方法估计得到了散度、温度、地面气压的非平衡项流依赖方差。最后,为了减少有限样本噪声对方差估计的影响,对非平衡项方差进行了校正和滤波。
Optimizing and improving the background error covariance model, which promote the better representation on flow-dependent uncertain information, are important technology to improve the precision of medium-range numerical forecast system. A key issue of ensemble four-dimensional variational data assimilation is the way to estimate and apply flow-dependent background information according to its own background error covariance model. In general, some variables can be divided into balanced and unbalanced parts. The balanced parts are associated with specific variables under the constraint of balanced relationship. The residual unbalanced parts are independent. With the model of numerical weather prediction improving continuously, unbalanced variances play more and more important roles in the total variance. In this paper, we briefly introduced the background error covariance model of YH4DVAR and Ensemble Four-dimensional Variational Data Assimilation system, and the balanced operators are analyzed specifically. The flow-dependent unbalanced variances are estimated successfully for divergence, temperature and surface pressure by an ensemble method. Finally, some calibration and filtering technologies are imposed on unbalanced variances to reduce the sampling noises.

References

[1]  张卫民, 朱小谦, 赵军. 气象资料三维变分同化阶段区域分解并行实现[J]. 计算机研究与发展, 2005, 42(6): 1059-1064.
[2]  钱维宏. 如何提高天气预报和气候预测的技巧[J]. 地球物理学报, 2012, 55(5): 1532-1540.
[3]  Daley, R. (1991) Atmospheric Data Analysis. Cambridge University Press, Cambridge, 2-210.
[4]  王瑞春. GRAPES变分框架下背景误差协方差矩阵的优化[D]: [硕士学位论文]. 南京: 南京信息工程大学, 2012.
[5]  Parrish, D.F. and Derber, J.D. (1992) The National Meteorological Center’s Spectral Statistical Interpolation Analysis System. Monthly Weather Review, 120, 1747-1763.
https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2
[6]  Fisher, M. and Andersson, E. (2001) Developments in 4D-Var and Kalman Filtering. ECMWF Technical Memorandum No. 347, 1-36.
[7]  Houtekamer, P.L., Lefaivre, L., Derome, J., et al. (1996) A System Simulation Approach to Ensemble Prediction. Monthly Weather Review, 124, 1225-1242.
https://doi.org/10.1175/1520-0493(1996)124<1225:ASSATE>2.0.CO;2
[8]  Isaksen, L. (2007) Use of Analysis Ensemble in Estimating Flow-Dependent Background Error Variance. Proc. ECMWF Workshop on Flow-Dependent Aspects of Data Assimilation, 11-13 June 2007, 65-86.
[9]  Isaksen, L., Bonavita, M., Buizza, R., et al. (2010) Ensemble of Data Assimilations at ECMWF. ECMWF Technical Memorandum No. 636, 45.
[10]  Isaksen, L., Haseler, J., Buizza, R., et al. (2010) The New Ensemble of Data Assimilations. ECMWF Newsletter No. 123, 17-21.
[11]  Courtier, P., Anderson, E., Heckley, W., et al. (1998) The ECMWF Implementation of Three-Dimensional Variational Assimilation (3DVAR). I: Formulation. Quarterly Journal of the Royal Meteorological Society, 124, 1783-1807.
https://doi.org/10.1002/qj.49712455002
[12]  Derber, J. and Bouttier, F. (1999) A Reformulation of the Back-ground-Error Covariance in the ECMWF Global Data Assimilation System. Tellus A, 51, 195-221.
https://doi.org/10.3402/tellusa.v51i2.12316
[13]  Liu, C., Xiao, Q. and Wang, B. (2008) An Ensemble-Based Four-Dimensional Variational Data Assimilation Scheme. Part I: Technical Formulation and Preliminary Test. Monthly Weather Review, 136, 3363-3373.
https://doi.org/10.1175/2008MWR2312.1
[14]  Liu, C., Xiao, Q. and Wang, B. (2009) An Ensemble-Based Four-Dimensional Variational Data Assimilation Scheme. Part II: Observing System Simulation Experiments with Advanced Research WRF (ARW). Monthly Weather Review, 137, 1687-1704.
https://doi.org/10.1175/2008MWR2699.1
[15]  邵爱梅, 邱晓滨, 邱崇践. 使用混合样本的集合四维变分同化试验研究[J]. 高原气象, 2011, 30(3): 583-593.
[16]  Pasmans, I. and Kurapov, A. (2019) Ensemble of 4DVARs (En4DVar) Data Assimilation in a Coastal Ocean Circulation Model, Part I: Methodology and Ensemble Statistics. Ocean Modelling, 144, Article ID: 101493.
https://doi.org/10.1016/j.ocemod.2019.101493
[17]  刘柏年, 皇群博, 张卫民, 等. 集合四维变分资料同化研究进展[J]. 气象科技进展, 2016, 6(5): 12-23.
[18]  Bonavita, M., Isaksen, L. and Holm, E. (2012) On the Use of EDA Background Error Variances in the ECMWF 4D-Var. Quarterly Journal of the Royal Meteorological Society, 138, 1540-1559.
https://doi.org/10.1002/qj.1899
[19]  刘艳, 薛纪善. GRAPES的新初始化方案[J]. 气象学报, 2016, 77(2): 165-179.
[20]  王若嘉. 为智慧气象之火添柴薪——GRAPES全球四维变分资料同化系统研发侧记[N]. 中国气象报, 2020, 3(13): 3.
[21]  刘永柱, 龚建东, 张林, 等. 线性化物理过程对GRAPES 4DVAR的影响[J]. 气象学报, 2016, 77(2): 196-209.
[22]  陈耀登, 赵幸, 闵锦忠, 等. 青藏高原和华东地区背景误差协方差特征的对比研究[J]. 大气科学学报, 2015, 38(5): 650-657.
[23]  陈耀登, 夏雪, 闵锦忠, 等. 背景误差协方差及其对台风同化和预报的影响[J]. 热带气象学报, 2017, 33(3): 289-298.
[24]  Barker, D., Huang, X. Y., Liu, Z., et al. (2012). The Weather Research and Forecasting Model’s Community Variational/Ensemble Data Assimilation System: WRFDA. Bulletin of the American Meteorological Society, 93, 831-843.
https://doi.org/10.1175/BAMS-D-11-00167.1
[25]  Huang, X.Y. (2012) WRFDA 2012 Overview. Egu General Assembly Conference. EGU General Assembly Conference Abstracts.
[26]  Wang, H., Huang, X. Y., Xu, D., et al. (2014) A Scale-Dependent Blending Scheme for WRFDA: Impact on Regional Weather Forecasting, Geoscientific Model Development, 7, 1819–1828.
https://doi.org/10.5194/gmd-7-1819-2014
[27]  Bouttier, F., Derber, J. and Fisher, M. (1997) The 1997 Revision of the Jb Term in 3D/4D Var. ECMWF Technical Memorandum, 238.
[28]  Bonavita, M., Hamrud, M. and Isaksen, L. (2015) EnKF and Hybrid Gain Ensemble Data Assimilation. Part II: EnKF and Hybrid Gain Results. Monthly Weather Review, 143, 150929114615006.
https://doi.org/10.1175/MWR-D-15-0071.1
[29]  张卫民, 曹小群, 宋君强. 以全球谱模式为约束的四维变分资料同化系统YH4DVAR的设计和实现[J]. 物理学报, 2012, 61(24): 249202.
[30]  曹小群, 宋君强, 张卫民, 等. 多源卫星观测数据在全球四维变分同化系统中的应用[J]. 测绘通报, 2014(S0): 102-107.
[31]  Fisher, M. (2003) Background Error Covariance Modelling. Seminar on Recent Developments in Data Assimilation for Atmosphere and Ocean, Shinfield Park, 8-12 September 2003, 45-64.
[32]  Fisher, M. (2004) Generalized Frames on the Sphere, with Application to the Background Error Covariance Modelling. Seminar on Recent Developments in Numerical Methods for Atmospheric and Ocean Modelling, Shinfield Park, 6-10 September 2004, 87-102.
[33]  Rabier, F., Mc Nally, A., Andersson, E., et al. (1998) The ECMWF Implementation of Three-Dimensional Variational Assimilation (3D-Var). II: Structure Functions. Quarterly Journal of the Royal Meteorological Society, 124, 1809-1829.
https://doi.org/10.1002/qj.49712455003
[34]  Bouttier, F. and Courtier, P. (1999) Data Assimilation Concepts and Methods. Meteorological Training Course Lecture Series.
[35]  Barker, D., Huang, W., Guo, Y., et al. (2003) A Three-Dimensional Variational (3DVAR) Data Assimilation System for Use with MM5. NCAR the Note, 68.
[36]  Deckmyn, A. and Berre, L. (2005) Wavelet Approach to Representing Background Error Covariance in a Limited Area Model. Monthly Weather Review, 133, 1279-1294.
https://doi.org/10.1175/MWR2929.1
[37]  曹小群, 黄思训, 张卫民, 等. 区域三维变分同化中背景误差协方差的模拟[J]. 气象科学, 2008(1): 12-18.
[38]  Lorenc, A.C. (1988) Optimal Nonlinear Objective Analysis. Quarterly Journal of the Royal Meteorological Society, 12, 55-67.
https://doi.org/10.1002/qj.49711447911
[39]  刘柏年. 集合资料同化及背景误差方差滤波方法研究[D]: [博士学位论文]. 长沙: 国防科技大学, 2017.
[40]  Raynaud, L., Berre, L. and Desroziers, G. (2009) Objective Filtering of Ensemble-Based Background-Error Variances. Quarterly Journal of the Royal Meteorological Society, 135, 1177-1199.
https://doi.org/10.1002/qj.438

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133