|
浙江省余姚市土壤硒分布特征及影响因素研究
|
Abstract:
基于余姚市土地质量地质调查项目,对余姚市全区进行1:5万土壤地球化学采样,并采用现代分析测试手段进行高精度土壤硒的富集、分布研究,对特色土地资源开发利用具有重要意义。通过对余姚市系统的采集并分析化验的4773件表层土壤样数据进行分布特征及影响因素的统计分析,并结合余姚市土壤地质背景,结果表明,余姚市总体Se含量分布规律为南高东低,山区相对平原区较高。土壤硒全量主要在0.065~3.33 mg/kg之间,平均值0.441 mg/kg,标准离差0.25,变异系数0.57。不同土壤类型中硒含量差异显著,其中黄壤 > 红壤 > 水稻土 > 潮土 > 盐土。成土母岩是影响土壤硒含量的主要因素,铁锰氧化物、有机质、土壤类型等理化性质对硒具有明显的富集作用,此外,余姚市土壤硒含量与海拔、土壤pH有明显的相关关系,与重金属元素无明显关系,人类活动与自然因素对土壤硒的富集有一定的影响。
Based on the geological survey project of land quality in Yuyao city, 1:50,000 soil geochemical sampling was carried out in the whole district of Yuyao city, and modern analysis and testing methods were used to study the enrichment and distribution of high-precision soil selenium, which is significant for the development and utilization of characteristic land resources. Through the statistical analysis of the distribution characteristics and influencing factors of 4773 surface soil samples collected and analyzed systematically in Yuyao city, and with the soil geological background of Yuyao city, the results show that the distribution of total Se content in Yuyao city is high in the south, low in the east, and relatively higher in mountainous area compared to plain area. The total amount of selenium content in soil is mainly between 0.065 and 3.33 mg/kg, with an average value of 0.441 mg/kg, a standard deviation of 0.25, and a coefficient of variation of 0.57. There are significant differences in selenium content among different soil types, in which yellow soil > red soil > paddy soil > tidal soil > saline soil. The parent rock is the main factor affecting soil selenium content. The physical and chemical properties of iron-manganese oxide, organic matter and soil type have obvious enrichment effect on selenium. In addition, the soil selenium content in Yuyao city is significantly correlated with altitude and soil pH, but has no obvious relationship with heavy metal elements, and human activities and natural factors has a certain impaction on soil selenium enrichment.
[1] | Milner, J.A. (2006) Diet and Cancer: Facts and Controversies. Nutrition and Cancer, 56, 216-224.
https://doi.org/10.1207/s15327914nc5602_13 |
[2] | Daniel, L.M. (2008) Distribution, Mineralogy and Geochemistry of Selenium in Felsic Volcanic-Hosted Massive Sulfide Deposits of the Finlayson Lake District, Yukon Territory, Canada. Economic Geology, 103, 61-68.
https://doi.org/10.2113/gsecongeo.103.1.61 |
[3] | 吴永尧, 彭振坤, 陈建英, 等. 水稻对环境硒的富集和耐受力研究[J]. 微量元素与健康研究, 1999, 16(4): 42-44. |
[4] | 尹昭汉, 鞠山见, 马晓丽, 等. 硒(Se)的生物地球化学及其生态效应[J]. 生物学杂志, 1989, 8(4): 45-50. |
[5] | 王松山, 梁东丽, 魏威, 等. 基于路径分析的土壤性质与硒形态的关系[J]. 土壤学报, 2011, 48(4): 823-830. |
[6] | 李杰, 杨志强, 刘枝刚, 等. 南宁市土壤硒分布特征及其影响因素探讨[J]. 土壤学报, 2012, 49(5): 1012-1020. |
[7] | 徐文, 唐文浩, 邝春兰, 等. 海南省土壤中硒含量及影响因素分析[J]. 安徽农业科学, 2010, 38(6): 3026-3027. |
[8] | 张艳玲, 潘根兴, 李正文, 等. 土壤-植物系统中硒的迁移转化及低硒地区食物链中硒的调节[J]. 土壤与环境, 2002, 11(4): 388-391. |
[9] | 孙朝, 侯青叶, 杨忠芳, 等. 典型土壤环境中硒的迁移转化影响因素研究——以四川省成都经济区为例[J]. 中国地质, 2010, 37(6): 1760-1768. |
[10] | 迟凤琴. 土壤环境中的硒和植物对硒的吸收转化[J]. 黑龙江农业科学, 2001(6): 33-34. |
[11] | 何振立. 污染及有益元素的土壤化学平衡[M]. 北京: 中国环境科学出版社, 1998: 345. |
[12] | 韩红煊, 金武昌. 余姚市耕地地力现状与评价[M]. 北京: 中国农业出版社, 2013.. |
[13] | 宋明义, 黄春雷, 董岩翔, 等. 浙江省富硒土壤成因分类及开发利用现状[J]. 上海地质, 2010, 31(S1): 107-110. |
[14] | 厉仁安, 曹秀芳, 俞震豫. 浙江红壤和黄壤分类研究初报[J]. 浙江农业大学学报, 1985, 11(2): 167-175. |
[15] | 章明奎. 土壤氧化铁的形态在浙江红壤和黄壤分类中的意义[J]. 浙江大学学报, 1990, 16(1): 42-50. |
[16] | 蔡妙珍, 邢承华. 土壤氧化铁的活化与环境意义[J]. 浙江师范大学学报(自然科学版), 2004, 27(3): 279-282. |
[17] | 戴慧敏, 宫传东, 董北, 等. 东北平原土壤硒分布特征及影响因素[J]. 土壤学报, 2015, 52(6): 1356-1364. |
[18] | 张东威. 中国土壤中硒及其土壤环境质量标准研究[J]. 水土保持研究, 1994, 1(5): 112. |
[19] | Umesh, C.G. and Subhas, C.G. (2010) Selenium Deficiency in Soils and Crops and Its Impact on Animal and Human Health. Current Nutrition & Food Science, 6, 268-280. https://doi.org/10.2174/157340110793663725 |
[20] | 武少兴, 龚子同, 黄标. 我国土壤中的溶态硒含量及其与土壤理化性质的关系[J]. 中国环境科学, 1997, 17(6): 522-525. |
[21] | 王秋爽, 罗杰, 蔡立梅, 等. 广东省揭西县土壤硒的分布特征及影响因素研究[J]. 土壤, 2018, 50(6): 1126-1133. |