全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

凝胶基质中室温磷光的研究与应用
Study and Applications of Room Temperature Phosphorescence in Gel Matrix

DOI: 10.12677/AAC.2020.103010, PP. 65-73

Keywords: 室温磷光,聚集诱导磷光,凝胶
Room Temperature Phosphorescence
, Aggregation Induced Phosphorescence, Gel

Full-Text   Cite this paper   Add to My Lib

Abstract:

室温磷光(Room Temperature Phosphorescence, RTP)现象的发现大大拓展了磷光材料的应用和研究方向。具有良好生物适应性的凝胶体系可以为磷光体提供更好的聚集效果,隔绝猝灭三线态的氧分子,并成为研究RTP现象的重要微环境。本文将综述凝胶基质中室温磷光现象的研究与应用,并对该研究方向进行了展望。
The discovery of room temperature phosphorescence (RTP) has greatly expanded the application and research of phosphorescent materials. The gel matrix with great biocompatibility could provide good aggregation effect for phosphor and isolate oxygen molecules from quenching excited triplet states, and has turned into an important microenvironment for the study of RTP. This paper will review the study and applications of RTP in gel matrix in recent years and prospect the future research directions of this area.

References

[1]  Keirs, R.J., Britt, R.D. and Wentworth, W.E. (1957) Phosphorimetry. Analytical Chemistry, 29, 202-209.
https://doi.org/10.1021/ac60122a008
[2]  朱若华, 徐文婷, 王伟. 室温磷光分析法的进展与应用[J]. 分析试验室, 2007, 26(4): 114-122.
[3]  Segura-Carretero, A., Cruces-Blanco, C., Ca?abate-D?az, B., et al. (2000) Heavy-Atom Induced Room-Temperature Phosphorescence: A Straightforward Methodology for the Determination of Organic Compounds in Solution. Analytica Chimica Acta, 417, 19-30.
https://doi.org/10.1016/S0003-2670(00)00917-X
[4]  Scypinski, S. and Love, L.J.C. (1984) Room Temperature Phosphorescence of Polynuclear Aromatic Hydrocarbons in Cyclodextrins. Analytical Chemistry, 3, 322-327.
https://doi.org/10.1021/ac00267a005
[5]  Paynter, R.A., Wellons, S.L. and Winefordner, J.D. (1974) New Method of Analysis Based on Room-Temperature Phosphorescence. Analytical Chemistry, 46, 736-738.
https://doi.org/10.1021/ac60342a044
[6]  Li, L., Chen, Y., Zhao, Y., et al. (1997) Room-Temperature Phosphorescence of Dansyl Chloride Solution in the Absence of Protective Medium and Its Medium Effect. Analytica Chimica Acta, 341, 241-249.
https://doi.org/10.1016/S0003-2670(96)00624-1
[7]  Turro, N.J., Bolt, J.D., Kuroda, Y., et al. (1982) A Study of the Kinetics of Inclusion of Halonaphthalenes with β-Cyclodexterin via Time Correlated Phosphorescence. Photochemistry and Photobiology, 35, 69-72.
https://doi.org/10.1111/j.1751-1097.1982.tb03812.x
[8]  Chen, H., Ma, X., Wu, S., et al. (2014) A Rapidly Self-Healing Supramolecular Polymer Hydrogel with Photostimulated Room-Temperature Phosphorescence Responsiveness. Angewandte Chemie International Edition, 53, 14149-14152.
https://doi.org/10.1002/anie.201407402
[9]  Chen, H., Yao, X., Ma, X., et al. (2016) Amorphous, Efficient, Room-Temperature Phosphorescent Metal-Free Polymers and Their Applications as Encryption Ink. Advanced Optical Materials, 4, 1397-1401.
https://doi.org/10.1002/adom.201600427
[10]  Yang, J., Zhen, X., Wang, B., et al. (2018) The Influence of the Molecular Packing on the Room Temperature Phosphorescence of Purely Organic Luminogens. Nature Communications, 9, 840.
https://doi.org/10.1038/s41467-018-03236-6
[11]  An, Z., Zheng, C., Tao, Y., et al. (2015) Stabilizing Triplet Excited States for Ultralong Organic Phosphorescence. Nature Materials, 14, 685-690.
https://doi.org/10.1038/nmat4259
[12]  Xu, B., Wu, H., Chen, J., et al. (2017) White-Light Emission from a Single Heavy Atom-Free Molecule with Room Temperature Phosphorescence, Mechanochromism and Thermochromism. Chemical Science, 8, 1909-1914.
https://doi.org/10.1039/C6SC03038F
[13]  Kuno, S., Akeno, H., Ohtani, H., et al. (2015) Visible Room-Temperature Phosphorescence of Pure Organic Crystals via a Radical-Ion-Pair Mechanism. Physical Chemistry Chemical Physics, 17, 15989-15995.
https://doi.org/10.1039/C5CP01203A
[14]  Wang, H., Wang, H., Yang, X., et al. (2015) Ion-Unquenchable and Thermally “On-Off” Reversible Room Temperature Phosphorescence of 3-Bromoquinoline Induced by Supramolecular Gels. Langmuir, 31, 486-491.
https://doi.org/10.1021/la5040323
[15]  Li, K.X., Zhao, L.F., Gong, Y.Y., et al. (2017) A Gelable Pure Organic Luminogen with Fluorescence-Phosphorescence Dual Emission. Science China Chemistry, 60, 806-812.
https://doi.org/10.1007/s11426-016-0460-8
[16]  Yuan, J., Zhou, Q., Dong, X., et al. (2019) Dissolved Oxygen-Assisted Enhancing Room Temperature Phosphorescence of Palladium-Porphyrin in Micelle-Hybridized Supramolecular Gels under UV Irradiation. Dyes and Pigements, 170, Article ID: 107654.
https://doi.org/10.1016/j.dyepig.2019.107654
[17]  Wang, X., Xu, Y., Ma, X., et al. (2018) Multicolor Photoluminescence of a Hybrid Film via the Dual-Emitting Strategy of an Inorganic Fluorescent Au Nanocluster and an Organic Room-Temperature Phosphorescent Copolymer. Industrial & Engineering Chemistry Research, 57, 2866-2872.
https://doi.org/10.1021/acs.iecr.7b04759
[18]  Yoshii, R., Hirose, A., Tanaka, K., et al. (2014) Functionalization of Boron Diiminates with Unique Optical Properties: Multicolor Tuning of Crystallization-Induced Emission and Introduction into the Main Chain of Conjugated Polymers. Journal of the American Chemical Society, 136, 18131-18139.
https://doi.org/10.1021/ja510985v
[19]  杨文胜, 高明远, 白玉白. 纳米材料与生物技术[M]. 北京: 化学工业出版社, 2005: 39-40.
[20]  Lin, S., Pan, H., Li, L., et al. (2019) AIPE-Active Platinum(II) Complexes with Tunable Photophysical Properties and Their Application in Constructing Thermosensitive Probes Used for Intracellular Temperature Imaging. Journal of Materials Chemistry C, 7, 7893-7899.
https://doi.org/10.1039/C9TC01905G
[21]  Li, W., Wu, S., Xu, X., et al. (2019) Carbon Dot-Silica Nanoparticle Composites for Ultralong Lifetime Phosphorescence Imaging in Tissue and Cells at Room Temperature. Chemistry of Materials, 31, 9887-9894.
https://doi.org/10.1021/acs.chemmater.9b04120
[22]  Maldiney, T., Bessière, A., Seguin, J., et al. (2014) The in Vivo Activation of Persistent Nanophosphors for Optical Imaging of Vascularization, Tumours and Grafted Cells. Nature Materials, 13, 418-426.
https://doi.org/10.1038/nmat3908
[23]  Kuramochi, Y., Fujisawa, Y. and Satake, A. (2019) Photocatalytic CO2 Reduction Mediated by Electron Transfer via the Excited Triplet State of Zn(II) Porphyrin. Journal of the American Chemical Society, 142, 705-709.
https://doi.org/10.1021/jacs.9b12712
[24]  H?ring, M., Abramov, A., Okumura, K., et al. (2018) Air-Sensitive Photoredox Catalysis Performed under Aerobic Conditions in Gel Networks. The Journal of Organic Chemistry, 83, 7928-7938.
https://doi.org/10.1021/acs.joc.8b00797
[25]  Khurana, B., Gierlich, P., Meindl, A., et al. (2019) Hydrogels: Soft Matters in Photomedicine. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology, 18, 2613-2656.
https://doi.org/10.1039/C9PP00221A
[26]  Deng, Y., Pan, S., Zheng, J., et al. (2020) Electrostatic Self-Assembled Iridium(III) Nano-Photosensitizer for Selectively Disintegrated and Mitochondria Targeted Photodynamic Therapy. Dyes and Pigments, 175, Article ID: 108105.
https://doi.org/10.1016/j.dyepig.2019.108105
[27]  Spagnul, C., Turner, L.C., Giuntini, F., et al. (2017) Synthesis and Bactericidal Properties of Porphyrins Immobilized in a Polyacrylamide Support: Influence of Metal Complexation on Photoactivity. Journal of Materials Chemistry B, 5, 1834-1845.
https://doi.org/10.1039/C6TB03198F
[28]  Xu, X., Zeng, Z., Huang, Z., et al. (2020) Near-Infrared Light-Triggered Degradable Hyaluronic Acid Hydrogel for On-Demand Drug Release and Combined Chemo-Photodynamic Therapy. Carbohydrate Polymers, 229, Article ID: 115394.
https://doi.org/10.1016/j.carbpol.2019.115394
[29]  Biswas, A., Bornhoeft, L.R., Banerjee, S., et al. (2017) Composite Hydrogels Containing Bioactive Microreactors for Optical Enzymatic Lactate Sensing. ACS Sensors, 2, 1584-1588.
https://doi.org/10.1021/acssensors.7b00648
[30]  Gan, N., Shi, H., An, Z., et al. (2018) Recent Advances in Polymer-Based Metal-Free Room-Temperature Phosphorescent Materials. Advanced Functional Materials, 28, Article ID: 1802657.
https://doi.org/10.1002/adfm.201802657

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133