|
凝胶基质中室温磷光的研究与应用
|
Abstract:
[1] | Keirs, R.J., Britt, R.D. and Wentworth, W.E. (1957) Phosphorimetry. Analytical Chemistry, 29, 202-209.
https://doi.org/10.1021/ac60122a008 |
[2] | 朱若华, 徐文婷, 王伟. 室温磷光分析法的进展与应用[J]. 分析试验室, 2007, 26(4): 114-122. |
[3] | Segura-Carretero, A., Cruces-Blanco, C., Ca?abate-D?az, B., et al. (2000) Heavy-Atom Induced Room-Temperature Phosphorescence: A Straightforward Methodology for the Determination of Organic Compounds in Solution. Analytica Chimica Acta, 417, 19-30. https://doi.org/10.1016/S0003-2670(00)00917-X |
[4] | Scypinski, S. and Love, L.J.C. (1984) Room Temperature Phosphorescence of Polynuclear Aromatic Hydrocarbons in Cyclodextrins. Analytical Chemistry, 3, 322-327. https://doi.org/10.1021/ac00267a005 |
[5] | Paynter, R.A., Wellons, S.L. and Winefordner, J.D. (1974) New Method of Analysis Based on Room-Temperature Phosphorescence. Analytical Chemistry, 46, 736-738. https://doi.org/10.1021/ac60342a044 |
[6] | Li, L., Chen, Y., Zhao, Y., et al. (1997) Room-Temperature Phosphorescence of Dansyl Chloride Solution in the Absence of Protective Medium and Its Medium Effect. Analytica Chimica Acta, 341, 241-249.
https://doi.org/10.1016/S0003-2670(96)00624-1 |
[7] | Turro, N.J., Bolt, J.D., Kuroda, Y., et al. (1982) A Study of the Kinetics of Inclusion of Halonaphthalenes with β-Cyclodexterin via Time Correlated Phosphorescence. Photochemistry and Photobiology, 35, 69-72.
https://doi.org/10.1111/j.1751-1097.1982.tb03812.x |
[8] | Chen, H., Ma, X., Wu, S., et al. (2014) A Rapidly Self-Healing Supramolecular Polymer Hydrogel with Photostimulated Room-Temperature Phosphorescence Responsiveness. Angewandte Chemie International Edition, 53, 14149-14152.
https://doi.org/10.1002/anie.201407402 |
[9] | Chen, H., Yao, X., Ma, X., et al. (2016) Amorphous, Efficient, Room-Temperature Phosphorescent Metal-Free Polymers and Their Applications as Encryption Ink. Advanced Optical Materials, 4, 1397-1401.
https://doi.org/10.1002/adom.201600427 |
[10] | Yang, J., Zhen, X., Wang, B., et al. (2018) The Influence of the Molecular Packing on the Room Temperature Phosphorescence of Purely Organic Luminogens. Nature Communications, 9, 840.
https://doi.org/10.1038/s41467-018-03236-6 |
[11] | An, Z., Zheng, C., Tao, Y., et al. (2015) Stabilizing Triplet Excited States for Ultralong Organic Phosphorescence. Nature Materials, 14, 685-690. https://doi.org/10.1038/nmat4259 |
[12] | Xu, B., Wu, H., Chen, J., et al. (2017) White-Light Emission from a Single Heavy Atom-Free Molecule with Room Temperature Phosphorescence, Mechanochromism and Thermochromism. Chemical Science, 8, 1909-1914.
https://doi.org/10.1039/C6SC03038F |
[13] | Kuno, S., Akeno, H., Ohtani, H., et al. (2015) Visible Room-Temperature Phosphorescence of Pure Organic Crystals via a Radical-Ion-Pair Mechanism. Physical Chemistry Chemical Physics, 17, 15989-15995.
https://doi.org/10.1039/C5CP01203A |
[14] | Wang, H., Wang, H., Yang, X., et al. (2015) Ion-Unquenchable and Thermally “On-Off” Reversible Room Temperature Phosphorescence of 3-Bromoquinoline Induced by Supramolecular Gels. Langmuir, 31, 486-491.
https://doi.org/10.1021/la5040323 |
[15] | Li, K.X., Zhao, L.F., Gong, Y.Y., et al. (2017) A Gelable Pure Organic Luminogen with Fluorescence-Phosphorescence Dual Emission. Science China Chemistry, 60, 806-812. https://doi.org/10.1007/s11426-016-0460-8 |
[16] | Yuan, J., Zhou, Q., Dong, X., et al. (2019) Dissolved Oxygen-Assisted Enhancing Room Temperature Phosphorescence of Palladium-Porphyrin in Micelle-Hybridized Supramolecular Gels under UV Irradiation. Dyes and Pigements, 170, Article ID: 107654. https://doi.org/10.1016/j.dyepig.2019.107654 |
[17] | Wang, X., Xu, Y., Ma, X., et al. (2018) Multicolor Photoluminescence of a Hybrid Film via the Dual-Emitting Strategy of an Inorganic Fluorescent Au Nanocluster and an Organic Room-Temperature Phosphorescent Copolymer. Industrial & Engineering Chemistry Research, 57, 2866-2872. https://doi.org/10.1021/acs.iecr.7b04759 |
[18] | Yoshii, R., Hirose, A., Tanaka, K., et al. (2014) Functionalization of Boron Diiminates with Unique Optical Properties: Multicolor Tuning of Crystallization-Induced Emission and Introduction into the Main Chain of Conjugated Polymers. Journal of the American Chemical Society, 136, 18131-18139. https://doi.org/10.1021/ja510985v |
[19] | 杨文胜, 高明远, 白玉白. 纳米材料与生物技术[M]. 北京: 化学工业出版社, 2005: 39-40. |
[20] | Lin, S., Pan, H., Li, L., et al. (2019) AIPE-Active Platinum(II) Complexes with Tunable Photophysical Properties and Their Application in Constructing Thermosensitive Probes Used for Intracellular Temperature Imaging. Journal of Materials Chemistry C, 7, 7893-7899. https://doi.org/10.1039/C9TC01905G |
[21] | Li, W., Wu, S., Xu, X., et al. (2019) Carbon Dot-Silica Nanoparticle Composites for Ultralong Lifetime Phosphorescence Imaging in Tissue and Cells at Room Temperature. Chemistry of Materials, 31, 9887-9894.
https://doi.org/10.1021/acs.chemmater.9b04120 |
[22] | Maldiney, T., Bessière, A., Seguin, J., et al. (2014) The in Vivo Activation of Persistent Nanophosphors for Optical Imaging of Vascularization, Tumours and Grafted Cells. Nature Materials, 13, 418-426.
https://doi.org/10.1038/nmat3908 |
[23] | Kuramochi, Y., Fujisawa, Y. and Satake, A. (2019) Photocatalytic CO2 Reduction Mediated by Electron Transfer via the Excited Triplet State of Zn(II) Porphyrin. Journal of the American Chemical Society, 142, 705-709.
https://doi.org/10.1021/jacs.9b12712 |
[24] | H?ring, M., Abramov, A., Okumura, K., et al. (2018) Air-Sensitive Photoredox Catalysis Performed under Aerobic Conditions in Gel Networks. The Journal of Organic Chemistry, 83, 7928-7938.
https://doi.org/10.1021/acs.joc.8b00797 |
[25] | Khurana, B., Gierlich, P., Meindl, A., et al. (2019) Hydrogels: Soft Matters in Photomedicine. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology, 18, 2613-2656. https://doi.org/10.1039/C9PP00221A |
[26] | Deng, Y., Pan, S., Zheng, J., et al. (2020) Electrostatic Self-Assembled Iridium(III) Nano-Photosensitizer for Selectively Disintegrated and Mitochondria Targeted Photodynamic Therapy. Dyes and Pigments, 175, Article ID: 108105.
https://doi.org/10.1016/j.dyepig.2019.108105 |
[27] | Spagnul, C., Turner, L.C., Giuntini, F., et al. (2017) Synthesis and Bactericidal Properties of Porphyrins Immobilized in a Polyacrylamide Support: Influence of Metal Complexation on Photoactivity. Journal of Materials Chemistry B, 5, 1834-1845. https://doi.org/10.1039/C6TB03198F |
[28] | Xu, X., Zeng, Z., Huang, Z., et al. (2020) Near-Infrared Light-Triggered Degradable Hyaluronic Acid Hydrogel for On-Demand Drug Release and Combined Chemo-Photodynamic Therapy. Carbohydrate Polymers, 229, Article ID: 115394. https://doi.org/10.1016/j.carbpol.2019.115394 |
[29] | Biswas, A., Bornhoeft, L.R., Banerjee, S., et al. (2017) Composite Hydrogels Containing Bioactive Microreactors for Optical Enzymatic Lactate Sensing. ACS Sensors, 2, 1584-1588. https://doi.org/10.1021/acssensors.7b00648 |
[30] | Gan, N., Shi, H., An, Z., et al. (2018) Recent Advances in Polymer-Based Metal-Free Room-Temperature Phosphorescent Materials. Advanced Functional Materials, 28, Article ID: 1802657. https://doi.org/10.1002/adfm.201802657 |