全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

变分资料同化中伴随敏感度计算优化技术
Optimization Techniques for Adjoint Sensitivity Computation in Variational Data Assimilation

DOI: 10.12677/AG.2020.108067, PP. 675-686

Keywords: 资料同化,离散伴随方法,最优化,敏感度计算,Jacobian矩阵
Data Assimilation
, Discrete Adjoint Method, Optimization, Sensitivity Computation, Jacobian Matrix

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对变分资料同化中目标泛函梯度计算复杂和实现困难等问题,研究了离散伴随敏感度计算优化技术。首先通过与梯度直接计算方法的比较,说明了伴随方程在变分资料同化中的重要作用,通过理论推导和分析展示了当分析变量维数特别巨大时伴随敏感度计算方法在计算效率方面的显著优势;其次考虑到在伴随敏感度计算中Jacobian矩阵是重要影响因素,结合大气预报方程组离散格式分析了伴随方程中Jacobian矩阵的稀疏性及非零元素分布特征;再次,针对变分资料同化中Jacobian矩阵的稀疏性给出了一种压缩存储策略;最后利用有向无环图对函数计算、切线性和伴随计算过程进行了表示,通过示例说明了基于计算图顶点消除的伴随代码优化技术,采用顶点消除方法对四维变分资料同化极小化过程中调用的热点伴随程序进行优化改进后,将大大减小计算量。
In order to solve the problems of complex and difficult implementation for calculating gradients of cost function in variational data assimilation, optimization techniques for the discrete adjoint sensitivity calculation are studied. Firstly, by comparing with the direct method of gradient com-putation, the important role of adjoint equation in variational data assimilation is illustrated. Through theoretical derivation and detailed analysis, it is shown that the adjoint sensitivity calculation method has significant advantages in terms of computational efficiency when the dimension of the analysis vector is very large. Secondly, because the Jacobian matrix is an important factor in the adjoint sensitivity calculation, the sparse and non-zero element distribution characteristics of it are analyzed in combination with the numerical discrete schemes in atmospheric prediction models. Thirdly, a compression strategy is given to store Jacobian matrix in variational data assimilation using its sparsity. Finally, different directed acyclic graphs are used to represent the function calculation, its tangent linear and adjoint calculation processes. A fast algorithm is proposed based on graph vertex elimination to accelerate adjoint sensitivity computation demonstrated by an example. By using the graph vertex elimination method, the hotspot programs called during the minimization of the four-dimensional variational data assimilation can be optimized and improved, which will greatly reduce the cost of computation.

References

[1]  黄思训, 伍荣生. 大气科学中的数学物理问题[M]. 北京: 气象出版社, 2001: 460.
[2]  邹晓蕾. 资料同化理论与应用(上册)[M]. 北京: 气象出版社, 2009.
[3]  曹小群, 黄思训, 杜华栋. 变分同化中水平误差函数的正交小波模拟新方法[J]. 物理学报, 2008, 57(3): 1984-1989.
[4]  韩月琪, 张耀存, 王云峰. 一种新的顺序数据同化方法[J]. 中国科学E辑: 技术科学, 2009, 39(8): 1472-1482.
[5]  曹小群, 宋君强, 张卫民. 一种基于复数域微分的资料同化新方法[J]. 物理学报, 2013, 62(17): 170504-9.
[6]  Evensen, G. (1994) Sequential Data Assimilation with a Nonlinear Quasi-Geostrophic Model Using Monte Carlo Methods to Forecast Error Statistics. Journal of Geophysical Research, 99, 10143-10162.
https://doi.org/10.1029/94JC00572
[7]  Houtekamer, P.L., Mitchell, H.L., Pellerin, G., et al. (2005) Atmospheric Data Assimilation with an Ensemble Kalman Filter: Results with Real Observations. Monthly Weather Review, 133, 604-620.
https://doi.org/10.1175/MWR-2864.1
[8]  闵锦忠, 刘盛玉, 毕坤, 等. 基于Hybrid EnSRF-En3DVar的雷达资料同化研究[J]. 大气科学学报, 2015, 38(2): 213-221.
[9]  闵锦忠, 尤悦, 高士博, 等. 微物理方案及其参数对EnSRF资料同化的影响研究[J]. 大气科学学报, 2016, 39(4): 510-524.
[10]  Rabier, F., Jarvinen, H., Klinker, E., et al. (2000) The ECMWF Operational Implementation of Four Dimensional Variational Assimilation. Part I: Experimental Results with Simplified Physics. Quarterly Journal of the Royal Meteorological Society, 126, 1143-1170.
https://doi.org/10.1002/qj.49712656415
[11]  Courtier, P., Thepaut, J.N. and Hollingsworth, A. (1994) A Strategy for Operational Implementation of 4D-Var, Using an Incremental Approach. Quarterly Journal of the Royal Meteorological Society, 120, 1367-1387.
https://doi.org/10.1002/qj.49712051912
[12]  张卫民, 曹小群, 宋君强. 以全球谱模式为约束的四维变分资料同化系统YH4DVAR的设计和实现[J]. 物理学报, 2012, 61(24): 249202.
[13]  马旭林, 庄照荣, 薛纪善, 等. GRAPES非静力数值预报模式的三维变分资料同化系统的发展[J]. 气象学报, 2009, 67(1): 50-60.
[14]  马旭林, 和杰, 周勃旸, 等. 非高斯分布观测误差资料的变分质量控制对暴雨预报的影响[J]. 大气科学学报, 2017, 40(2): 170-180.
[15]  Giering, R. and Kaminski, T. (1998) Recipes for Adjoint Code Construction. ACM Transactions on Mathematical Software, 24, 437-474.
https://doi.org/10.1145/293686.293695
[16]  程强, 曹建文, 王斌, 等. 伴随模式生成器[J]. 中国科学F辑: 信息科学, 2009, 39(5): 545-558.
[17]  刘永柱, 张林, 金之雁. GRAPES全球切线性和伴随模式的调优[J]. 应用气象学报, 2017, 28(1): 62-71.
[18]  郑琴, 叶飞辉, 沙建新, 等. 几种约束优化算法求解含“开关”过程的条件非线性最优扰动的比较[J]. 大气科学学报, 2017, 40(2): 273-279.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133