全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

深水立管入水过程中涡激耦合振动特性分析
Dynamic Characteristics of Drilling Risers as Being Entered into Deep Water

DOI: 10.12677/JOGT.2020.422024, PP. 124-137

Keywords: 深水,柔性隔水管,涡激振动,三维模型,范德波尔尾迹模型,流固耦合
Deep Water
, Flexible Riser, Vortex-Induced Vibration, 3D-Model, Van der Pol Wake Model, Fluid-Structure Interaction

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文基于哈密顿原理,建立了一种柔性立管涡激振动(VIV)的三维有限元动力学模型。该模型考虑了管内流体的流动,而管外尾迹(wake)由一组沿立管变化的并与立管侧向加速度相耦合的范德波尔振子模型(van der Pol oscillator wake model)加以模拟,水深以千米计。立管上端可以设置下入速度,可以随平台移动和摆动,下端则可以悬挂重物(如防喷器)和自由运动,也可以与水下井口连接。基于该模型,本文模拟了在一定的潮流、风流和波浪条件下,带或不带浮力块的隔水管下入过程中的动力学响应,重点讨论了悬挂重量、进入速度、入水深度对隔水管下端落点偏离、上端最大拉应力及全管最大弯曲应力的影响。本文处理的是一种典型的内外流固耦合振问题和复杂初边值问题,为后续有关研究提供了有效的计算分析工具。
Based on the Hamilton principle, a three-dimensional finite element dynamic model is established in this paper for investigating the vortex-induced vibration (VIV) of a flexible riser in deep water in kilometers. The model includes the fluid flowing within the riser, and the wake outside the riser is modeled by the van der Pol wake oscillators which are distributed along the riser length and coupled with the lateral accelerations of the riser. In addition to setting an entering speed, the upper end of the riser can be in movements with the platform, while the lower end can either move and swing with the additional weight (such as blowout preventer, BOP), or be connected to the underwater wellhead. Using the proposed models, the VIVs of therisersbared or partially wearing with buoyant blocks were simulated in the currents caused by tide, wind and waves. The effects of the entry speed, BOP weight and water depth on the deviation of the lower end of the riser, the maximum tensile stress at the upper end and the maximum bending stress throughout the riser are discussed especially. This study deals with a typical internal and external fluid-solid coupled vibration problem, involving in the complex initial-boundary values, and aims to providing an effective tool in calculation and analysis for the subsequent related researches.

References

[1]  Ward, E., Haring, R. and Devlin, P. (1999) Deepwater Mooring and Riser Analysis for Depths to 10,000 Feet. Pro-ceedings of the Offshore Technology Conference, Houston, TX, 3-6 May 1999.
https://doi.org/10.4043/10808-MS
[2]  高峰. 超深水顶端张紧式钻井隔水管结构与 VIV 疲劳分析[M]. 哈尔滨: 哈尔滨工程大学, 2010.
[3]  Breihan, J.W., Altermann, J.A. and Jellison, M.J. (2001) Landing Tubulars Design, Manufacture, Inspection and Use Issues. Proceedings of the SPE/IADC Drilling Conference, Society of Petroleum Engineers, London.
https://doi.org/10.2118/67723-MS
[4]  周俊昌, 付英军, 朱荣东. 深水钻井送入管柱技术及其发展趋势[J]. 石油钻探技术, 2014, 42(6): 1-7.
[5]  Facchinetti, M.L., De Langre, E. and Biolley, F. (2004) Coupling of Structure and Wake Oscillators in Vortex-Induced Vibrations. Journal of Fluids and Structures, 19, 123-140.
https://doi.org/10.1016/j.jfluidstructs.2003.12.004
[6]  Willden, R. and Graham, J. (2001) Numerical Prediction of VIV on Long Flexible Circular Cylinders. Journal of Fluids and Structures, 15, 659-669.
https://doi.org/10.1006/jfls.2000.0359
[7]  Meneghini, J.R., Saltara, F., Fregonesi, R.D.A., et al. (2004) Numerical Simulations of VIV on Long Flexible Cylinders Immersed in Complex Flow Fields. European Journal of Mechanics, 23, 51-63.
https://doi.org/10.1016/j.euromechflu.2003.09.006
[8]  Holmes, S., Oakley, O.H. and Constantinides, Y. (2008) Simulation of Riser VIV Using Fully Three Dimensional CFD Simulations. In: Proceedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering, American Society of Mechanical Engineers Digital Col-lection, New York.
[9]  Menter, F., Sharkey, P., Yakubov, S., et al. (2008) Overview of Fluid-Structure Coupling in ANSYS-CFX. In: Proceedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering, American Society of Mechanical Engineers Digital Collection, New York.
[10]  Huang, K., Chen, H.-C. and Chen, C.-R. (2010) Vertical Riser VIV Simulation in Uniform Current. Journal of Offshore Mechanics and Arctic Engineering, 132, Article ID: 031101.
https://doi.org/10.1115/1.4000498
[11]  Hartlen, R.T. and Currie, I.G. (1970) Lift-Oscillator Model of Vortex-Induced Vibration. Journal of the Engineering Mechanics Division, 96, 577-591.
[12]  Kim, W.-J. and Perkins, N. (2002) Two-Dimensional Vortex-Induced Vibration of Cable Suspensions. Journal of Fluids and Structures, 16, 229-245.
https://doi.org/10.1006/jfls.2001.0418
[13]  Wang, L., Jiang, T., Dai, H., et al. (2018) Three-Dimensional Vortex-Induced Vibrations of Supported Pipes Conveying Fluid Based on Wake Oscillator Models. Journal of Sound and Vibration, 422, 590-612.
https://doi.org/10.1016/j.jsv.2018.02.032
[14]  Wang, E. and Xiao, Q. (2016) Numerical Simulation of Vor-tex-Induced Vibration of a Vertical Riser in Uniform and Linearly Sheared Currents. Ocean Engineering, 121, 492-515.
https://doi.org/10.1016/j.oceaneng.2016.06.002
[15]  Keber, M. and Wiercigroch, M. (2008) Dynamics of a Vertical Riser with Weak Structural Nonlinearity Excited by Wakes. Journal of Sound and Vibration, 315, 685-699.
https://doi.org/10.1016/j.jsv.2008.03.023
[16]  Zanganeh, H. and Srinil, N. (2014) Characterization of Variable Hydrodynamic Coefficients and Maximum Responses in Two-Dimensional Vortex-Induced Vibrations with Dual Resonances. Journal of Vibration and Acoustics, 136, Article ID: 051010.
https://doi.org/10.1115/1.4027805
[17]  Yang, W., Ai, Z., Zhang, X., et al. (2018) Nonlinear Dynamics of Three-Dimensional Vortex-Induced Vibration Prediction Model for a Flexible Fluid-Conveying Pipe. International Journal of Mechanical Sciences, 138-139, 99-109.
https://doi.org/10.1016/j.ijmecsci.2018.02.005
[18]  Lehn, E. (2003) VIV Suppression Tests on High L/D Flexible Cylinders. Norwegian Marine Technology Research Institute, Trondheim, Norway.
[19]  高德利, 王宴滨. 深水钻井管柱力学与设计控制技术研究新进展[J]. 石油科学通报, 2016, 1(1): 61-80.
[20]  Boccotti, P. (2000) Wave Mechanics for Ocean Engineering. Elsevier, Amsterdam.
[21]  Franzini, G.R., Fujarra, A.L.C., Meneghini, J.R., et al. (2009) Experimental Investigation of Vortex-Induced Vibration on Rigid, Smooth and Inclined Cylinders. Journal of Fluids and Structures, 25, 742-750.
https://doi.org/10.1016/j.jfluidstructs.2009.01.003

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133